Hidden Chern number in one-dimensional non-Hermitian chiral-symmetric systems

被引:38
作者
Brzezicki, Wojciech [1 ]
Hyart, Timo [1 ]
机构
[1] Polish Acad Sci, Int Res Ctr MagTop, Inst Phys, Aleja Lotnikow 32-46, PL-02668 Warsaw, Poland
关键词
PHYSICS; STATES;
D O I
10.1103/PhysRevB.100.161105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider a class of one-dimensional non-Hermitian models with a special type of a chiral symmetry which is related to pseudo-Hermiticity. We show that the topology of a Hamiltonian belonging to this symmetry class is determined by a hidden Chern number described by an effective two-dimensional Hermitian Hamiltonian H-eff(k, eta), where eta is the imaginary part of the energy. This Chern number manifests itself as topologically protected in-gap end states at zero real part of the energy. We show that the bulk-boundary correspondence coming from the hidden Chern number is robust and immune to the non-Hermitian skin effect. We introduce a minimal model Hamiltonian supporting topologically nontrivial phases in this symmetry class, derive its topological phase diagram, and calculate the end states originating from the hidden Chern number.
引用
收藏
页数:6
相关论文
共 77 条
[1]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[2]   Nonreciprocal lasing in topological cavities of arbitrary geometries [J].
Bahari, Babak ;
Ndao, Abdoulaye ;
Vallini, Felipe ;
El Amili, Abdelkrim ;
Fainman, Yeshaiahu ;
Kante, Boubacar .
SCIENCE, 2017, 358 (6363) :636-639
[3]   Topological insulator laser: Experiments [J].
Bandres, Miguel A. ;
Wittek, Steffen ;
Harari, Gal ;
Parto, Midya ;
Ren, Jinhan ;
Segev, Mordechai ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2018, 359 (6381)
[4]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[5]   A classification of 2D random Dirac fermions [J].
Bernard, D ;
LeClair, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (11) :2555-2567
[6]   Physics of nonhermitian degeneracies [J].
Berry, MV .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (10) :1039-1047
[7]  
Borgnia D. S., ARXIV190207217
[8]   Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics [J].
Cao, Hui ;
Wiersig, Jan .
REVIEWS OF MODERN PHYSICS, 2015, 87 (01) :61-111
[9]   Experimental realization of a Weyl exceptional ring [J].
Cerjan, Alexander ;
Huang, Sheng ;
Wang, Mohan ;
Chen, Kevin P. ;
Chong, Yidong ;
Rechtsman, Mikael C. .
NATURE PHOTONICS, 2019, 13 (09) :623-+
[10]  
Deng J.-W., ARXIV12121861