Thermal boundary resistance at the graphene-oil interface

被引:124
作者
Konatham, Deepthi [1 ]
Striolo, Alberto [1 ]
机构
[1] Univ Oklahoma, Sch Chem Biol & Mat Engn Norman, Norman, OK 73019 USA
关键词
CARBON-NANOTUBE COMPOSITES; AQUEOUS DISPERSIONS; HEAT-TRANSFER; HELIUM II; CONDUCTIVITY; NANORIBBONS; SUSPENSIONS; NANOSHEETS; SCIENCE; FLOW;
D O I
10.1063/1.3251794
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, using molecular dynamics simulations, we demonstrate that it is possible to significantly reduce the Kapitza resistance [P. L. Kapitza, J. Phys. (USSR) 4, 181 (1941)] at the graphene sheet-liquid octane interface by appropriately functionalizing the graphene sheets. The key concept is that the functional groups, to be effective, must show vibrational modes compatible with those of the organic matrix. Because functionalizing graphene sheets at their edges should not compromise their exceptional intrinsic thermal-transport properties, our results suggest a practical recipe for manufacturing high-thermal-transport polymeric nanocomposites. (C) 2009 American Institute of Physics. [doi:10.1063/1.3251794]
引用
收藏
页数:3
相关论文
共 34 条
  • [1] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [2] Thermal stability of graphene edge structure and graphene nanoflakes
    Barnard, Amanda S.
    Snook, Ian K.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (09)
  • [3] Unusually high thermal conductivity of carbon nanotubes
    Berber, S
    Kwon, YK
    Tománek, D
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (20) : 4613 - 4616
  • [4] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [5] Carbon nanotube composites for thermal management
    Biercuk, MJ
    Llaguno, MC
    Radosavljevic, M
    Hyun, JK
    Johnson, AT
    Fischer, JE
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (15) : 2767 - 2769
  • [6] Electronic states of graphene nanoribbons studied with the Dirac equation
    Brey, L
    Fertig, HA
    [J]. PHYSICAL REVIEW B, 2006, 73 (23):
  • [7] Anomalous thermal conductivity enhancement in nanotube suspensions
    Choi, SUS
    Zhang, ZG
    Yu, W
    Lockwood, FE
    Grulke, EA
    [J]. APPLIED PHYSICS LETTERS, 2001, 79 (14) : 2252 - 2254
  • [8] Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites
    Clancy, Thomas C.
    Gates, Thomas S.
    [J]. POLYMER, 2006, 47 (16) : 5990 - 5996
  • [9] Computational modeling of the thermal conductivity of single-walled carbon nanotube - polymer composites
    Duong, Hai M.
    Papavassiliou, Dimitrios V.
    Mullen, Kieran J.
    Maruyama, Shigeo
    [J]. NANOTECHNOLOGY, 2008, 19 (06)
  • [10] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191