Thermal boundary resistance at the graphene-oil interface

被引:126
作者
Konatham, Deepthi [1 ]
Striolo, Alberto [1 ]
机构
[1] Univ Oklahoma, Sch Chem Biol & Mat Engn Norman, Norman, OK 73019 USA
关键词
CARBON-NANOTUBE COMPOSITES; AQUEOUS DISPERSIONS; HEAT-TRANSFER; HELIUM II; CONDUCTIVITY; NANORIBBONS; SUSPENSIONS; NANOSHEETS; SCIENCE; FLOW;
D O I
10.1063/1.3251794
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, using molecular dynamics simulations, we demonstrate that it is possible to significantly reduce the Kapitza resistance [P. L. Kapitza, J. Phys. (USSR) 4, 181 (1941)] at the graphene sheet-liquid octane interface by appropriately functionalizing the graphene sheets. The key concept is that the functional groups, to be effective, must show vibrational modes compatible with those of the organic matrix. Because functionalizing graphene sheets at their edges should not compromise their exceptional intrinsic thermal-transport properties, our results suggest a practical recipe for manufacturing high-thermal-transport polymeric nanocomposites. (C) 2009 American Institute of Physics. [doi:10.1063/1.3251794]
引用
收藏
页数:3
相关论文
共 34 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Thermal stability of graphene edge structure and graphene nanoflakes [J].
Barnard, Amanda S. ;
Snook, Ian K. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (09)
[3]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[4]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[5]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[6]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[7]   Anomalous thermal conductivity enhancement in nanotube suspensions [J].
Choi, SUS ;
Zhang, ZG ;
Yu, W ;
Lockwood, FE ;
Grulke, EA .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2252-2254
[8]   Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites [J].
Clancy, Thomas C. ;
Gates, Thomas S. .
POLYMER, 2006, 47 (16) :5990-5996
[9]   Computational modeling of the thermal conductivity of single-walled carbon nanotube - polymer composites [J].
Duong, Hai M. ;
Papavassiliou, Dimitrios V. ;
Mullen, Kieran J. ;
Maruyama, Shigeo .
NANOTECHNOLOGY, 2008, 19 (06)
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191