New insights into CO2 methanation mechanisms on Ni/MgO catalysts by DFT calculations: Elucidating Ni and MgO roles and support effects

被引:101
作者
Huang, Jin [1 ]
Li, Xiao [1 ]
Wang, Xiang [1 ]
Fang, Xiuzhong [1 ]
Wang, Hongming [2 ]
Xu, Xianglan [1 ]
机构
[1] Nanchang Univ, Inst Appl Chem, Coll Chem, Nanchang 330031, Jiangxi, Peoples R China
[2] Nanchang Univ, Inst Adv Study, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; hydrogenation; Ni-based catalysts; SMSI; H-spillover effect; H2O formation; TOTAL-ENERGY CALCULATIONS; GAS SHIFT REACTION; HYDROGENATION; 1ST-PRINCIPLES; NANOPARTICLES; SELECTIVITY; ACTIVATION; SPILLOVER; SURFACES; PARTICLE;
D O I
10.1016/j.jcou.2019.04.022
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO2 methanation mechanisms were investigated by DFT calculations on pure Ni(111), hydrogen-assisted MgO (110) and Ni/MgO surfaces to get insights into Ni and MgO roles and support effects on the mechanisms. For Ni/MgO catalysts, Ni is the active site and MgO acts as the promoter for CO2 methanation reaction. The role of Ni on the reaction is not only to decompose H-2 to H atom but also the active site for CO2 hydrogenation. Compared with the pure Ni surface, Bader charge analysis has demonstrated strong metal-support interactions between Ni and MgO distinctly improve Ni reducibility of the Ni/MgO surface. This leads to that the C terminal of CO2 gains more electrons from the Ni/MgO surface, thus promoting the process of C-terminal hydrogenation on the surface. Consequently, CO2 methanation follows the formate pathway via the H2COO* intermediate on the Ni/MgO surface, differing from the formate pathway via the HCOOH* intermediate on the Ni(111) surface. In addition, the presence of MgO support is beneficial for the OH removal and then the H2O formation during CO2 methanation, due to the H-spillover effect and the strong OH adsorption on the MgO support.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 46 条
[1]   Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy [J].
Aldana, P. A. Ussa ;
Ocampo, F. ;
Kobl, K. ;
Louis, B. ;
Thibault-Starzyk, F. ;
Daturi, M. ;
Bazin, P. ;
Thomas, S. ;
Roger, A. C. .
CATALYSIS TODAY, 2013, 215 :201-207
[2]   CO2 methanation over heterogeneous catalysts: recent progress and future prospects [J].
Aziz, M. A. A. ;
Jalil, A. A. ;
Triwahyono, S. ;
Ahmad, A. .
GREEN CHEMISTRY, 2015, 17 (05) :2647-2663
[3]   Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation [J].
Aziz, M. A. A. ;
Jalil, A. A. ;
Triwahyono, S. ;
Mukti, R. R. ;
Taufiq-Yap, Y. H. ;
Sazegar, M. R. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 147 :359-368
[4]   A Nanoscale Demonstration of Hydrogen Atom Spillover and Surface Diffusion Across Silica Using the Kinetics of CO2 Methanation Catalyzed on Spatially Separate Pt and Co Nanoparticles [J].
Beaumont, Simon K. ;
Alayoglu, Selim ;
Specht, Colin ;
Kruse, Norbert ;
Somorjai, Gabor A. .
NANO LETTERS, 2014, 14 (08) :4792-4796
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   ADSORPTION OF HYDROGEN ON NICKEL SINGLE-CRYSTAL SURFACES [J].
CHRISTMANN, K ;
SCHOBER, O ;
ERTL, G ;
NEUMANN, M .
JOURNAL OF CHEMICAL PHYSICS, 1974, 60 (11) :4528-4540
[7]   Lewis Acido-Basic Interactions between CO2 and MgO Surface: DFT and DRIFT Approaches [J].
Cornu, Damien ;
Guesmi, Hazar ;
Krafft, Jean-Marc ;
Lauron-Pernot, Helene .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (11) :6645-6654
[8]   Hydrogen Oxidation Reaction at the Ni/YSZ Anode of Solid Oxide Fuel Cells from First Principles [J].
Cucinotta, Clotilde S. ;
Bernasconi, Marco ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2011, 107 (20)
[9]   In situ growth of carbon nanotubes on Ni/MgO: a facile preparation of efficient catalysts for the production of synthetic natural gas from syngas [J].
Fan, M. T. ;
Lin, J. D. ;
Zhang, H. B. ;
Liao, D. W. .
CHEMICAL COMMUNICATIONS, 2015, 51 (86) :15720-15723
[10]   Supported Catalysts for CO2 Methanation: A Review [J].
Frontera, Patrizia ;
Macario, Anastasia ;
Ferraro, Marco ;
Antonucci, PierLuigi .
CATALYSTS, 2017, 7 (02)