Extragradient MethodsWith CQ Technique for Fixed Point Problems and Equilibrium Problems

被引:0
作者
Yao, Zhangsong [1 ]
Liou, Yeong-Cheng [2 ,3 ,4 ]
Zhu, Li-Jun [5 ,6 ]
机构
[1] Nanjing Xiaozhuang Univ, Sch Informat Engn, Nanjing 211171, Peoples R China
[2] Kaohsiung Med Univ, Dept Healthcare Adm & Med Informat, Kaohsiung 807, Taiwan
[3] Kaohsiung Med Univ, Res Ctr Nonlinear Anal & Optimizat, Kaohsiung 807, Taiwan
[4] Kaohsiung Med Univ Hosp, Dept Med Res, Kaohsiung 807, Taiwan
[5] North Minzu Univ, Sch Math & Informat Sci, Yinchuan 750021, Ningxia, Peoples R China
[6] North Minzu Univ, Key Lab Intelligent Informat & Big Data Proc Ning, Yinchuan 750021, Ningxia, Peoples R China
基金
中国国家自然科学基金;
关键词
Fixed point; Pseudomonotone equilibrium problem; Pseudocontractive operators; Extragradient method; VARIATIONAL-INEQUALITIES; CONVERGENCE; SYSTEMS;
D O I
10.2298/FIL2014783Y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study iterative algorithms for solving fixed point problems and equilibrium problems in Hilbert spaces. We present an extragradient algorithm with CQ technique for finding a common element of the fixed points of pseudocontractive operators and the solutions of pseudomonotone equilibrium problems. Strong convergence result of the proposed algorithm is proved.
引用
收藏
页码:4783 / 4793
页数:11
相关论文
共 39 条
[1]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[2]   Convergence of direct methods for paramonotone variational inequalities [J].
Bello Cruz, J. Y. ;
Iusem, A. N. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 46 (02) :247-263
[3]  
Blum E., 1994, MATH STUDENT, V63, P123
[4]   A MODIFIED INERTIAL SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND COMMON FIXED POINT PROBLEMS [J].
Ceng, L. C. ;
Petrusel, A. ;
Qin, X. ;
Yao, J. C. .
FIXED POINT THEORY, 2020, 21 (01) :93-108
[5]   SYSTEMS OF VARIATIONAL INEQUALITIES WITH HIERARCHICAL VARIATIONAL INEQUALITY CONSTRAINTS FOR LIPSCHITZIAN PSEUDOCONTRACTIONS [J].
Ceng, Lu-Chuan ;
Petrusel, Adrian ;
Yao, Jen-Chih ;
Yao, Yonghong .
FIXED POINT THEORY, 2019, 20 (01) :113-133
[6]   HYBRID VISCOSITY EXTRAGRADIENT METHOD FOR SYSTEMS OF VARIATIONAL INEQUALITIES, FIXED POINTS OF NONEXPANSIVE MAPPINGS, ZERO POINTS OF ACCRETIVE OPERATORS IN BANACH SPACES [J].
Ceng, Lu-Chuan ;
Petrusel, Adrian ;
Yao, Jen-Chih ;
Yao, Yonghong .
FIXED POINT THEORY, 2018, 19 (02) :487-+
[7]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[8]   PSEUDOMONOTONE COMPLEMENTARITY-PROBLEMS IN HILBERT-SPACE [J].
COTTLE, RW ;
YAO, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (02) :281-295
[9]   Modified extragradient-like algorithms with new stepsizes for variational inequalities [J].
Dang Van Hieu ;
Pham Ky Anh ;
Le Dung Muu .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (03) :913-932
[10]   Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings [J].
Dang Van Hieu ;
Le Dung Muu ;
Pham Ky Anh .
NUMERICAL ALGORITHMS, 2016, 73 (01) :197-217