The super-separability of the three-body inverse-square Calogero system

被引:35
作者
Benenti, S [1 ]
Chanu, C [1 ]
Rastelli, G [1 ]
机构
[1] Univ Turin, Dept Math, I-10124 Turin, Italy
关键词
D O I
10.1063/1.533369
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The geometrical theory of the variable separation for the Hamilton-Jacobi equation is applied to the classical three-body inverse-square Calogero system. It is proved that this system is separable in infinitely many inequivalent ways, related to five different kinds of separable webs in the Euclidean three-space, and the corresponding systems of independent first integrals in involution are computed. (C) 2000 American Institute of Physics. [S0022-2488(00)05707-8].
引用
收藏
页码:4654 / 4678
页数:25
相关论文
共 23 条
[1]   Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation [J].
Benenti, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) :6578-6602
[2]  
Benenti S., 1993, Differential Geometry and Its Applications, Opava,1992, V1, P163
[3]  
BENENTI S, UNPUB REMARKS CONNEC
[4]  
BENENTI S, UNPUB KILLING TENSOR
[5]   SOLUTION OF A 3-BODY PROBLEM IN ONE DIMENSION [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2191-&
[6]   Separable systems of Stackel [J].
Eisenhart, LP .
ANNALS OF MATHEMATICS, 1934, 35 :284-305
[7]   SUPERINTEGRABILITY IN CLASSICAL MECHANICS [J].
EVANS, NW .
PHYSICAL REVIEW A, 1990, 41 (10) :5666-5676
[8]  
Kalnins E.G., 1986, Pitman Monographs and Surveys in Pure and Applied Mathematics, V28
[9]   Superintegrability in three-dimensional Euclidean space [J].
Kalnins, EG ;
Williams, GC ;
Miller, W ;
Pogosyan, GS .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) :708-725
[10]   Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions [J].
Kalnins, EG ;
Miller, W ;
Pogosyan, GS .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (12) :6439-6467