FEKETE AND SZEGO INEQUALITY FOR A SUBCLASS OF STARLIKE MAPPINGS OF ORDER α ON THE BOUNDED STARLIKE CIRCULAR DOMAIN IN Cn

被引:4
作者
Liu, Taishun [1 ]
Xu, Qinghua [2 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China
关键词
Fekete-Szego problem; starlike mappings of order alpha; bounded starlike circular domain; PARAMETRIC REPRESENTATION; COEFFICIENT BOUNDS; GROWTH THEOREMS;
D O I
10.1016/S0252-9602(17)30033-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, first, we establish the Fekete and Szego inequality for an interesting subclass of biholomorphic functions in the open unit disk U. Second, we generalize this result to the bounded starlike circular domain in C-n. The proofs of these results use some restrictive assumptions, which in the case of one complex variable are automatically satisfied.
引用
收藏
页码:722 / 731
页数:10
相关论文
共 26 条
[1]   On the Fekete-Szego problem for concave univalent functions [J].
Bhowmik, B. ;
Ponnusamy, S. ;
Wirths, K-J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :432-438
[2]  
BIEBERBACH L., 1916, KOEFFIZIENTEN EINIGE
[3]  
Cartan H, POSSIBILITE ETENDRE
[4]   A PROOF OF THE BIEBERBACH CONJECTURE [J].
DEBRANGES, L .
ACTA MATHEMATICA, 1985, 154 (1-2) :137-152
[5]  
Fekete M, 1933, J. London Math. Soc., V1, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]
[6]  
Gong S., 1999, The Bieberbach Conjecture
[7]   Loewner chains and parametric representation in several complex variables [J].
Graham, I ;
Kohr, G ;
Kohr, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (02) :425-438
[8]   Parametric representation of univalent mappings in several complex variables [J].
Graham, I ;
Hamada, H ;
Kohr, G .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (02) :324-351
[9]  
Graham I., 2003, Monographs and Textbooks in Pure and Applied Mathematics, V255
[10]   Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation [J].
Hamada, H ;
Honda, T ;
Kohr, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (01) :302-319