Semi-supervised link prediction based on non-negative matrix factorization for temporal networks *

被引:4
|
作者
Zhang, Ting [1 ]
Zhang, Kun [1 ]
Li, Xun [1 ]
Lv, Laishui [1 ]
Sun, Qi [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
关键词
Temporal link prediction; Semi-supervised learning; Graph regularized non-negative matrix; factorization; Temporal networks;
D O I
10.1016/j.chaos.2021.110769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Temporal link prediction is a critical issue in the field of network analysis, which predicts the future links in temporal networks. In order to facilitate the performance of temporal link prediction approach, we should fuse the topological and temporal properties. Here we propose a novel semi-supervised non negative matrix factorization method for temporal link prediction. Potential useful prior information is obtained from community which naturally expresses topological structure of networks. Moreover, we capture the temporal information of networks by graph communicability. We factorize the communicability matrix respect to the temporal network by setting the historic networks as graph regularization and priors as node pair constraints. Extensive experiments on both synthetic and real-world networks demonstrate that the proposed method can improve the accuracy of temporal link prediction. Especially, our method performs stably when the wrong prior rate is up to 30% . (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Constrained Non-negative Matrix Factorization with Graph Laplacian
    Chen, Pan
    He, Yangcheng
    Lu, Hongtao
    Wu, Li
    NEURAL INFORMATION PROCESSING, PT III, 2015, 9491 : 635 - 644
  • [42] Semi-supervised nonnegative matrix factorization with label propagation and constraint propagation
    Mo, Yuanjian
    Li, Xiangli
    Mei, Jianping
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [43] Fast Global and Local Semi-Supervised Learning via Matrix Factorization
    Du, Yuanhua
    Luo, Wenjun
    Wu, Zezhong
    Zhou, Nan
    MATHEMATICS, 2024, 12 (20)
  • [44] Semi-supervised nonnegative matrix factorization with pairwise constraints for image clustering
    Zhang, Ying
    Li, Xiangli
    Jia, Mengxue
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (11) : 3577 - 3587
  • [45] Adaptive Multi-view Semi-supervised Nonnegative Matrix Factorization
    Wang, Jing
    Wang, Xiao
    Tian, Feng
    Liu, Chang Hong
    Yu, Hongchuan
    Liu, Yanbei
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 435 - 444
  • [46] Dual semi-supervised convex nonnegative matrix factorization for data representation
    Peng, Siyuan
    Yang, Zhijing
    Ling, Bingo Wing-Kuen
    Chen, Badong
    Lin, Zhiping
    INFORMATION SCIENCES, 2022, 585 : 571 - 593
  • [47] Adversarial nonnegative matrix factorization for temporal link prediction
    Zhang, Ting
    Lv, Laishui
    Bardou, Dalal
    PHYSICS LETTERS A, 2024, 527
  • [48] Semi-supervised nonnegative matrix factorization with pairwise constraints for image clustering
    Ying Zhang
    Xiangli Li
    Mengxue Jia
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 3577 - 3587
  • [49] Network Embedding Using Semi-Supervised Kernel Nonnegative Matrix Factorization
    He, Chaobo
    Zhang, Qiong
    Tang, Yong
    Liu, Shuangyin
    Liu, Hai
    IEEE ACCESS, 2019, 7 : 92732 - 92744
  • [50] Graph regularized nonnegative matrix factorization for link prediction in directed temporal networks using PageRank centrality
    Lv, Laishui
    Bardou, Dalal
    Hu, Peng
    Liu, Yanqiu
    Yu, Gaohang
    CHAOS SOLITONS & FRACTALS, 2022, 159