Semi-supervised link prediction based on non-negative matrix factorization for temporal networks *

被引:4
|
作者
Zhang, Ting [1 ]
Zhang, Kun [1 ]
Li, Xun [1 ]
Lv, Laishui [1 ]
Sun, Qi [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
关键词
Temporal link prediction; Semi-supervised learning; Graph regularized non-negative matrix; factorization; Temporal networks;
D O I
10.1016/j.chaos.2021.110769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Temporal link prediction is a critical issue in the field of network analysis, which predicts the future links in temporal networks. In order to facilitate the performance of temporal link prediction approach, we should fuse the topological and temporal properties. Here we propose a novel semi-supervised non negative matrix factorization method for temporal link prediction. Potential useful prior information is obtained from community which naturally expresses topological structure of networks. Moreover, we capture the temporal information of networks by graph communicability. We factorize the communicability matrix respect to the temporal network by setting the historic networks as graph regularization and priors as node pair constraints. Extensive experiments on both synthetic and real-world networks demonstrate that the proposed method can improve the accuracy of temporal link prediction. Especially, our method performs stably when the wrong prior rate is up to 30% . (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Semi-supervised Nonnegative Matrix Factorization with Commonness Extraction
    Teng, Yueyang
    Qi, Shouliang
    Dai, Yin
    Xu, Lisheng
    Qian, Wei
    Kang, Yan
    NEURAL PROCESSING LETTERS, 2017, 45 (03) : 1063 - 1076
  • [32] A non-negative sparse semi-supervised dimensionality reduction algorithm for hyperspectral data
    Wang, Xuesong
    Gao, Yang
    Cheng, Yuhu
    NEUROCOMPUTING, 2016, 188 : 275 - 283
  • [33] Semi-supervised Nonnegative Matrix Factorization with Commonness Extraction
    Yueyang Teng
    Shouliang Qi
    Yin Dai
    Lisheng Xu
    Wei Qian
    Yan Kang
    Neural Processing Letters, 2017, 45 : 1063 - 1076
  • [34] Constrained nonnegative matrix factorization-based semi-supervised multilabel learning
    Yu, Dingguo
    Fu, Bin
    Xu, Guandong
    Qin, Aihong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (05) : 1093 - 1100
  • [35] Hypergraph based semi-supervised symmetric nonnegative matrix factorization for image clustering
    Yin, Jingxing
    Peng, Siyuan
    Yang, Zhijing
    Chen, Badong
    Lin, Zhiping
    PATTERN RECOGNITION, 2023, 137
  • [36] Constrained nonnegative matrix factorization-based semi-supervised multilabel learning
    Dingguo Yu
    Bin Fu
    Guandong Xu
    Aihong Qin
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 1093 - 1100
  • [37] A Novel Adaptive Multi-View Non-Negative Graph Semi-Supervised ELM
    Zheng, Feng
    Liu, Zeyu
    Chen, Yijian
    An, Jiacheng
    Zhang, Yanyan
    IEEE ACCESS, 2020, 8 : 116350 - 116362
  • [38] Semi-Supervised Nonnegative Matrix Factorization via Constraint Propagation
    Wang, Di
    Gao, Xinbo
    Wang, Xiumei
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 233 - 244
  • [39] Community Detection in Multilayer Networks Via Semi-Supervised Joint Symmetric Nonnegative Matrix Factorization
    Lv, Laishui
    Hu, Peng
    Bardou, Dalal
    Zheng, Zijun
    Zhang, Ting
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (03): : 1623 - 1635
  • [40] Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks
    Ma, Xiaoke
    Sun, Penggang
    Wang, Yu
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 496 : 121 - 136