Pyrolytic carbon nanograss electrodes for electrochemical detection of dopamine

被引:19
作者
Asif, Afia [1 ,2 ]
Heiskanen, Arto [1 ]
Emneus, Jenny [1 ]
Keller, Stephan Sylvest [2 ]
机构
[1] Tech Univ Denmark, DTU Bioengn, Dept Biotechnol & Biomed, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Natl Ctr Nano Fabricat & Characterizat, DTU Nanolab, DK-2800 Lyngby, Denmark
基金
欧盟地平线“2020”;
关键词
Carbon; Pyrolytic; Carbon nanograss; Nanoelectrodes; Electrochemistry; Dopamine; CELLS; FABRICATION;
D O I
10.1016/j.electacta.2021.138122
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbon microelectrodes are being used extensively in numerous applications due to their intriguing and promising material properties. Here, we present the optimized fabrication of carbon nanograss (CNG) electrodes with a single-step UV lithography with SU-8 photoresist followed by maskless reactive-ion etching and pyrolysis. This simple method provides nanostructured carbon electrodes with high surface area suitable for electrochemical applications such as biosensing or electrochemical monitoring of cells. The effects of the initial SU-8 film thickness and the etching time on the electrochemical response of the electrodes was investigated using cyclic voltammetry and electrochemical impedance spectroscopy. Finally, the CNG electrodes were tested for electrochemical detection of dopamine and compared with 2D pyrolytic carbon electrodes without nanograss. The carbon electrodes with the highest CNG displayed an approximately 2-fold increase in electrochemical signals compared to the 2D electrodes due to the increase in electrode surface area. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 38 条
[11]   Fabrication and Characterization of Graphitic Carbon Nanostructures with Controllable Size, Shape, and Position [J].
Du, Rongbing ;
Ssenyange, Solomon ;
Aktary, Mirwais ;
McDermott, Mark T. .
SMALL, 2009, 5 (10) :1162-1168
[12]   Culture of neural cells on silicon wafers with nano-scale surface topograph [J].
Fan, YW ;
Cui, FZ ;
Hou, SP ;
Xu, QY ;
Chen, LN ;
Lee, IS .
JOURNAL OF NEUROSCIENCE METHODS, 2002, 120 (01) :17-23
[13]   Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration [J].
Greiner, F. ;
Quednau, S. ;
Dassinger, F. ;
Sarwar, R. ;
Schlaak, H. F. ;
Guttmann, M. ;
Meyer, P. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (02)
[14]   High temperature SU-8 pyrolysis for fabrication of carbon electrodes [J].
Hassan, Y. M. ;
Caviglia, C. ;
Hemanth, S. ;
Mackenzie, D. M. A. ;
Alstrom, T. S. ;
Petersen, D. H. ;
Keller, S. S. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2017, 125 :91-99
[15]   Fabrication of Micro- and Nanopillars from Pyrolytic Carbon and Tetrahedral Amorphous Carbon [J].
Heikkinen, Joonas J. ;
Peltola, Emilia ;
Wester, Niklas ;
Koskinen, Jari ;
Laurila, Tomi ;
Franssila, Sami ;
Jokinen, Ville .
MICROMACHINES, 2019, 10 (08)
[16]   3D Carbon Microelectrodes with Bio-Functionalized Graphene for Electrochemical Biosensing [J].
Hemanth, Suhith ;
Halder, Arnab ;
Caviglia, Claudia ;
Chi, Qijin ;
Keller, Stephan Sylvest .
BIOSENSORS-BASEL, 2018, 8 (03)
[17]   Suspended 3D pyrolytic carbon microelectrodes for electrochemistry [J].
Hemanth, Suhith ;
Caviglia, Claudia ;
Keller, Stephan Sylvest .
CARBON, 2017, 121 :226-234
[18]   The era of carbon allotropes [J].
Hirsch, Andreas .
NATURE MATERIALS, 2010, 9 (11) :868-871
[19]  
Jenkins G.M., 1976, Polymeric carbons - carbon fibre, glass and char
[20]   Three-Dimensional Carbon Interdigitated Electrode Arrays for Redox-Amplification [J].
Kamath, Rahul R. ;
Madou, Marc J. .
ANALYTICAL CHEMISTRY, 2014, 86 (06) :2963-2971