Highly dispersive optical solitons with a polynomial law of refractive index by Laplace-Adomian decomposition

被引:19
作者
Gonzalez-Gaxiola, O. [1 ]
Biswas, Anjan [2 ,3 ,4 ,5 ]
Alzahrani, Abdullah K. [3 ]
Belic, Milivoj R. [6 ]
机构
[1] Univ Autonoma Metropolitana Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Vasco Quiroga 4871, Mexico City 05348, DF, Mexico
[2] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[3] King Abdulaziz Univ, Dept Math, Math Modeling & Appl Computat MMAC Res Grp, Jeddah 21589, Saudi Arabia
[4] Natl Res Nucl Univ, Dept Appl Math, 31 Kashirskoe Hwy, Moscow 115409, Russia
[5] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Pretoria, South Africa
[6] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
关键词
Nonlinear Schrö dinger’ s equation; Cubic– quintic– septic law; Highly dispersive solitons; Laplace– Adomian decomposition method; QUINTIC-SEPTIC LAW; CONVERGENCE;
D O I
10.1007/s10825-021-01710-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a numerical study of highly dispersive optical solitons that maintain a cubic-quintic-septic nonlinear (also know as polynomial) form of the refractive index. The Laplace-Adomian decomposition scheme is applied as a numerical algorithm to put the model into perspective. Both bright and dark soliton solutions are studied in this context. Both surface plots and contour plots of such solitons are presented. The error plots are also shown, demonstrating extremely low error measure values.
引用
收藏
页码:1216 / 1223
页数:8
相关论文
共 23 条
[1]  
Adomian G., 1994, SOLVING FRONTIER PRO, DOI [10.1007/978-94-015-8289-6, DOI 10.1007/978-94-015-8289-6]
[2]   On the order of convergence of Adomian method [J].
Babolian, E ;
Biazar, J .
APPLIED MATHEMATICS AND COMPUTATION, 2002, 130 (2-3) :383-387
[3]   Highly dispersive optical solitons with cubic-quintic-septic law by It Check for exp-expansion [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Belic, Milivoj R. .
OPTIK, 2019, 186 :321-325
[4]   Highly dispersive optical solitons with cubic-quintic-septic law by F-expansion [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Belic, Milivoj R. .
OPTIK, 2019, 182 :897-906
[5]   Highly dispersive optical solitons with cubic-quintic-septic law by extended Jacobi's elliptic function expansion [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Belic, Milivoj R. .
OPTIK, 2019, 183 :571-578
[6]   Convenient analytic recurrence algorithms for the Adomian polynomials [J].
Duan, Jun-Sheng .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (13) :6337-6348
[7]   Exact solitons in optical metamaterials with quadratic-cubic nonlinearity using two integration approaches [J].
Ekici, Mehmet .
OPTIK, 2018, 156 :351-355
[8]   The analytical study of solitons to the nonlinear Schrodinger equation with resonant nonlinearity [J].
Ekici, Mehmet ;
Zhou, Qin ;
Sonmezoglu, Abdullah ;
Manafian, Jalil ;
Mirzazadeh, Mohammad .
OPTIK, 2017, 130 :378-382
[9]   Highly dispersive optical solitons with non-local law of refractive index by Laplace-Adomian decomposition [J].
Gonzalez-Gaxiola, O. ;
Biswas, Anjan ;
Asma, Mir ;
Alzahrani, Abdullah K. .
OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (01)
[10]   Cubic-quartic bright optical solitons with improved Adomian decomposition method [J].
Gonzalez-Gaxiola, O. ;
Biswas, Anjan ;
Mallawi, Fouad ;
Belic, Milivoj R. .
JOURNAL OF ADVANCED RESEARCH, 2020, 21 :161-167