On the Secure Total Domination Number of Graphs

被引:5
作者
Cabrera Martinez, Abel [1 ]
Montejano, Luis P. [2 ]
Rodriguez-Velazquez, Juan A. [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Ave Paisos Catalans 26, E-43007 Tarragona, Spain
[2] Univ Politecn Cataluna, Euncet Univ Business Sch, Terrassa 08225, Spain
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 09期
关键词
secure total domination; secure domination; independence number; matching number; domination; OUTER-CONNECTED DOMINATION; PROTECTION; ROMAN;
D O I
10.3390/sym11091165
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A total dominating set D of a graph G is said to be a secure total dominating set if for every vertex u is an element of V(G) \ D, there exists a vertex v is an element of D, which is adjacent to u, such that (D \ {v}) boolean OR {u} is a total dominating set as well. The secure total domination number of G is the minimum cardinality among all secure total dominating sets of G. In this article, we obtain new relationships between the secure total domination number and other graph parameters: namely the independence number, the matching number and other domination parameters. Some of our results are tight bounds that improve some well-known results.
引用
收藏
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 2010, DISCUSS MATH GRAPH T
[2]  
Benecke S, 2007, UTILITAS MATHEMATICA, V74, P247
[3]   Vertex covers and secure domination in graphs [J].
Burger, Alewyn P. ;
Henning, Michael A. ;
van Vuuren, Jan H. .
QUAESTIONES MATHEMATICAE, 2008, 31 (02) :163-171
[4]   Total Weak Roman Domination in Graphs [J].
Cabrera Martinez, Abel ;
Montejano, Luis P. ;
Rodriguez-Velazquez, Juan A. .
SYMMETRY-BASEL, 2019, 11 (06)
[5]   Bounds on weak roman and 2-rainbow domination numbers [J].
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE APPLIED MATHEMATICS, 2014, 178 :27-32
[6]  
Cockayne E. J., 2003, Bulletin of the Institute of Combinatorics and its Applications, V39, P87
[7]  
Cockayne EJ, 2005, UTILITAS MATHEMATICA, V67, P19
[8]   Total outer-connected domination numbers of trees [J].
Cyman, Joanna ;
Raczek, Joanna .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (15) :3198-3202
[9]   Bounds on the k-domination number of a graph [J].
DeLaVina, Ermelinda ;
Goddard, Wayne ;
Henning, Michael A. ;
Pepper, Ryan ;
Vaughan, Emil R. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (06) :996-998
[10]   Secure total domination in graphs: Bounds and complexity [J].
Duginov, Oleg .
DISCRETE APPLIED MATHEMATICS, 2017, 222 :97-108