On the Secure Total Domination Number of Graphs

被引:5
作者
Cabrera Martinez, Abel [1 ]
Montejano, Luis P. [2 ]
Rodriguez-Velazquez, Juan A. [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Ave Paisos Catalans 26, E-43007 Tarragona, Spain
[2] Univ Politecn Cataluna, Euncet Univ Business Sch, Terrassa 08225, Spain
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 09期
关键词
secure total domination; secure domination; independence number; matching number; domination; OUTER-CONNECTED DOMINATION; PROTECTION; ROMAN;
D O I
10.3390/sym11091165
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A total dominating set D of a graph G is said to be a secure total dominating set if for every vertex u is an element of V(G) \ D, there exists a vertex v is an element of D, which is adjacent to u, such that (D \ {v}) boolean OR {u} is a total dominating set as well. The secure total domination number of G is the minimum cardinality among all secure total dominating sets of G. In this article, we obtain new relationships between the secure total domination number and other graph parameters: namely the independence number, the matching number and other domination parameters. Some of our results are tight bounds that improve some well-known results.
引用
收藏
页数:12
相关论文
共 22 条
  • [1] [Anonymous], 2010, DISCUSS MATH GRAPH T
  • [2] Benecke S, 2007, UTILITAS MATHEMATICA, V74, P247
  • [3] Vertex covers and secure domination in graphs
    Burger, Alewyn P.
    Henning, Michael A.
    van Vuuren, Jan H.
    [J]. QUAESTIONES MATHEMATICAE, 2008, 31 (02) : 163 - 171
  • [4] Total Weak Roman Domination in Graphs
    Cabrera Martinez, Abel
    Montejano, Luis P.
    Rodriguez-Velazquez, Juan A.
    [J]. SYMMETRY-BASEL, 2019, 11 (06):
  • [5] Bounds on weak roman and 2-rainbow domination numbers
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 178 : 27 - 32
  • [6] Cockayne E. J., 2003, Bulletin of the Institute of Combinatorics and its Applications, V39, P87
  • [7] Cockayne EJ, 2005, UTILITAS MATHEMATICA, V67, P19
  • [8] Total outer-connected domination numbers of trees
    Cyman, Joanna
    Raczek, Joanna
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (15) : 3198 - 3202
  • [9] Bounds on the k-domination number of a graph
    DeLaVina, Ermelinda
    Goddard, Wayne
    Henning, Michael A.
    Pepper, Ryan
    Vaughan, Emil R.
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (06) : 996 - 998
  • [10] Secure total domination in graphs: Bounds and complexity
    Duginov, Oleg
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 222 : 97 - 108