Note on coherent states and adiabatic connections, curvatures

被引:24
作者
Fujii, K [1 ]
机构
[1] Yokohama City Univ, Dept Math Sci, Yokohama, Kanagawa 2360027, Japan
关键词
D O I
10.1063/1.533350
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a possible generalization to the example in the paper of Zanardi and Rasetti [Phys. Lett. A 264, 94 (1999)]. For this, explicit forms of adiabatic connection, curvature, etc., are given. We also discuss the possibility of another generalization of their model. (C) 2000 American Institute of Physics. [S0022-2488(00)05007-6].
引用
收藏
页码:4406 / 4412
页数:7
相关论文
共 16 条
[1]  
[Anonymous], INTRO QUANTUM COMPUT
[2]   SOLUTIONS OF A(INFINITY) TODA EQUATIONS BASED ON NONCOMPACT GROUP SU(1,1) AND INFINITE-DIMENSIONAL GRASSMANN MANIFOLDS [J].
FUJII, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (04) :1652-1665
[3]  
FUJII K, HEPTH9907049
[4]  
KITAEV A, QUANTPH9707021
[5]  
Klauder J. R, 1985, Coherent States
[6]  
Nakahara M., 1990, Graduate Stu dent Series in Physics
[7]  
NIETO MM, QUANTPH9908048
[8]  
Perelomov A., 1986, GEN COHERENT STATES
[9]  
PRESKILL J, QUANTPH97120408
[10]   Geometric phases for generalized squeezed coherent states [J].
Seshadri, S ;
Lakshmibala, S ;
Balakrishnan, V .
PHYSICAL REVIEW A, 1997, 55 (02) :869-875