Littlewood-Paley theory for matrix-weighted function spaces

被引:12
作者
Frazier, Michael [1 ]
Roudenko, Svetlana [2 ]
机构
[1] Univ Tennessee, Math Dept, Knoxville, TN 37996 USA
[2] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
关键词
Primary 42B35; 47B38; 42B25; Secondary 46A20;
D O I
10.1007/s00208-020-02088-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the vector-valued, matrix-weighted function spaces (F) over dot(p)(alpha q)(W) (homogeneous) and F-p(alpha q)(W) (inhomogeneous) on R-n, for alpha is an element of R, 0 < p < infinity, 0 < q <= infinity, with the matrix weight W belonging to the A(p) class. For 1 < p < infinity, we show that L-p(W) = (F) over dot(p)(alpha q)(W), and, for k is an element of N, that F-p(k2)(W) coincides with the matrix-weighted Sobolev space Lkp(W), thereby obtaining Littlewood-Paley characterizations of L-p(W) and L-k(p)(W). We show that a vector-valued function belongs to (F) over dot(p)(alpha q)(W) if and only if its wavelet or phi-transform coefficients belong to an associated sequence space (F) over dot(p)(alpha q)(W). We also characterize these spaces in terms of reducing operators associated to W.
引用
收藏
页码:487 / 537
页数:51
相关论文
共 38 条
[1]  
Aaen A, 2009, THESIS AALBORG U AAL, P1
[2]   CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS [J].
BENEDEK, A ;
PANZONE, R ;
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (03) :356-&
[3]  
Benyi A., 2017, DISCRETE CALDERON RE, P79
[4]  
Bergh J., 1976, INTERPOLATION SPACES
[5]  
CALDERON AP, 1961, P S PURE MATH, V4, P33
[6]   Vector A2 weights and a Hardy-Littlewood maximal function [J].
Christ, M ;
Goldberg, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (05) :1995-2002
[7]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[8]  
Cruz-Uribe D., ARXIV190506436
[9]   Two Weight Bump Conditions for Matrix Weights [J].
Cruz-Uribe, David ;
Isralowitz, Joshua ;
Moen, Kabe .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (03)
[10]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996