A combined recovery process of metals in spent lithium-ion batteries

被引:304
|
作者
Li, Jinhui [1 ]
Shi, Pixing [1 ]
Wang, Zefeng [1 ]
Chen, Yao [1 ]
Chang, Chein-Chi [2 ]
机构
[1] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China
[2] Univ Maryland Baltimore Cty, Dept Civil & Environm Engn, Baltimore, MD 21228 USA
关键词
Recycling; Crushing; Ultrasonic washing; Acid leaching; Chemical precipitation; SECONDARY BATTERIES; VALUES; COBALT; TECHNOLOGIES; EXTRACTION; WASTES; NICKEL; LICOO2;
D O I
10.1016/j.chemosphere.2009.08.040
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This work proposes a new process of recovering Co from spent Li-ion batteries (LIBs) by a combination of crushing, ultrasonic washing, acid leaching and precipitation, in which ultrasonic washing was used for the first time as an alternative process to improve the recovery efficiency of Co and reduce energy consumption and pollution. Spent LIBs were crushed with a 12 mm aperture screen, and the undersize products were put into an ultrasonic washing container to separate electrode materials from their support substrate. The washed materials were filtered through a 2 mm aperture screen to get underflow products, namely recovered electrodes. Ninety two percent of the Co was transferred to the recovered electrodes where Co accounted for 28% of the mass and impurities, including Al, Fe, and Cu, accounted for 2%. The valuable materials left in 2-12 mm products, including Cu, Al, and Fe, were presented as thin sheets, and could be easily separated. The recovered electrodes were leached with 4.0 M HCl for 2.0 h, at 80 degrees C, along with concurrent agitation. Ninety seven percent of the Li and 99% of the Co in recovered electrodes could be dissolved. The impurities could be removed at pH 4.5-6.0 with little loss of Co by chemical precipitation. This process is feasible for recycling spent LIBs in scale-up. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1132 / 1136
页数:5
相关论文
共 50 条
  • [1] Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries
    Yang, Yue
    Huang, Guoyong
    Xu, Shengming
    He, Yinghe
    Liu, Xin
    HYDROMETALLURGY, 2016, 165 : 390 - 396
  • [2] A sustainable process for the recovery of valuable metals from spent lithium-ion batteries
    Fan, Bailin
    Chen, Xiangping
    Zhou, Tao
    Zhang, Jinxia
    Xu, Bao
    WASTE MANAGEMENT & RESEARCH, 2016, 34 (05) : 474 - 481
  • [3] Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries
    Sun, Liang
    Qiu, Keqiang
    JOURNAL OF HAZARDOUS MATERIALS, 2011, 194 : 378 - 384
  • [4] Recovery of metals from spent lithium-ion batteries using organic acids
    Demarco, Jessica de Oliveira
    Cadore, Jessica Stefanello
    de Oliveira, Franciele da Silveira
    Tanabe, Eduardo Hiromitsu
    Bertuol, Daniel Assumpcao
    HYDROMETALLURGY, 2019, 190
  • [5] Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries
    Chen, Yongming
    Liu, Nannan
    Hu, Fang
    Ye, Longgang
    Xi, Yan
    Yang, Shenghai
    WASTE MANAGEMENT, 2018, 75 : 469 - 476
  • [6] Sustainable Recovery of Metals from Spent Lithium-Ion Batteries: A Green Process
    Chen, Xiangping
    Luo, Chuanbao
    Zhang, Jinxia
    Kong, Jiangrong
    Zhou, Tao
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (12): : 3104 - 3113
  • [7] A green process to recover valuable metals from the spent ternary lithium-ion batteries
    Wang, Yu
    Xu, Zhiqiang
    Zhang, Xi
    Yang, Enze
    Tu, Yanan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 299
  • [8] Recovery and Recycling of Valuable Metals from Spent Lithium-Ion Batteries: A Comprehensive Review and Analysis
    Tawonezvi, Tendai
    Nomnqa, Myalelo
    Petrik, Leslie
    Bladergroen, Bernard Jan
    ENERGIES, 2023, 16 (03)
  • [9] Recovery and Separation of Valuable Metals from Cathode Materials of Spent Lithium-Ion Batteries (LIBs) by Ion Exchange
    Chiu, Kai-Lun
    Chen, Wei-Sheng
    SCIENCE OF ADVANCED MATERIALS, 2017, 9 (12) : 2155 - 2160
  • [10] Recovery of Graphite from Spent Lithium-Ion Batteries
    Badenhorst, Charlotte
    Kuzniarska-Biernacka, Iwona
    Guedes, Alexandra
    Mousa, Elsayed
    Ramos, Violeta
    Rollinson, Gavin
    Ye, Guozhu
    Valentim, Bruno
    RECYCLING, 2023, 8 (05)