Smoothness of subspace sections of the unit balls of C(Q) and L1

被引:10
作者
Alimov, A. R. [1 ,2 ,3 ]
Tsar'kov, I. G. [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119992, Russia
[2] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
[3] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Space of continuous functions C(Q); Space of absolutely integrable functions L-1; Smooth set; Nonsmooth section; Section of the ball by a subspace; SETS;
D O I
10.1016/j.jat.2021.105552
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, for any integer n >= 2, the space C(Q) (where Q is a Hausdorff compact set, card Q > n) contains an n-dimensional subspace such that any translation thereof by a vector p, parallel to p parallel to < 1, intersects the unit ball B of C(Q) in a nonsmooth set. In L-1[0, 1], we show that if l is an arbitrary finite-dimensional subspace in L-1[0, 1], dim l. 1, then there exists a dense set in the unit ball B. L-1[0, 1] set of its translations that intersect the unit ball of L-1[0, 1] in smooth sets. As an application, we show that in L-1[0, 1] any finite-dimensional sun is convex. This extends the classical P.Orno-Yu. A. Brudnyi-E. A. Gorin's theorem to the effect that in L-1[0, 1] any Chebyshev set is either a singleton or is infinite-dimensional. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:8
相关论文
共 16 条
[1]   Connectedness and solarity in problems of best and near-best approximation [J].
Alimov, A. R. ;
Tsar'kov, I. G. .
RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (01) :1-77
[2]   Convexity of Chebyshev sets contained in a subspace [J].
Alimov, AR .
MATHEMATICAL NOTES, 2005, 78 (1-2) :3-13
[3]   On the structure of the complements of Chebyshev sets [J].
Alimov, AR .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2001, 35 (03) :176-182
[4]  
[Anonymous], 1986, SPRINGER SER COMPUT
[5]  
Braess D., 1974, J APPROX THEORY, V11, P260
[6]   SOME SUNS IN L-1 [J].
BROSOWSKI, B ;
DEUTSCH, F ;
LAMBERT, J ;
MORRIS, PD .
JOURNAL OF APPROXIMATION THEORY, 1976, 16 (04) :310-314
[7]  
Brosowski B., 1970, Journal of Approximation Theory, V3, P369, DOI 10.1016/0021-9045(70)90041-9
[8]  
Eskenazis, 2019, DISCRETE COMPUT GEOM, P1
[9]  
Gorin E.A., 1988, GEOMETRIC PROBLEMS B
[10]  
Kothe G., 1969, TOPOLOGICAL VECTOR S, V1