Interfacial reinforcement structure design towards ultrastable lithium storage in MoS2-based composited electrode

被引:48
作者
Cao, Chunyan [1 ,2 ]
Dong, Huilong [3 ]
Liang, Fanghua [1 ]
Zhang, Yu [1 ]
Zhang, Wei [1 ]
Wang, Hailou [1 ]
Shao, Huaiyu [4 ]
Liu, Hongchao [4 ]
Dong, Kai [5 ]
Tang, Yuxin [6 ]
Lai, Yuekun [6 ]
Ge, Mingzheng [1 ]
机构
[1] Nantong Univ, Sch Text & Clothing, Nantong 226019, Peoples R China
[2] City Univ Hong Kong, Dept Biomed Sci, Hong Kong 999077, Peoples R China
[3] Changshu Inst Technol, Sch Mat Engn, Changshu 215500, Jiangsu, Peoples R China
[4] Univ Macau, Inst Appl Phys & Mat Engn, Macau 999078, Peoples R China
[5] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[6] Fuzhou Univ, Coll Chem Engn, Fuzhou 350116, Peoples R China
基金
中国国家自然科学基金;
关键词
Interfacial reinforcement; MoS2; nanosheets; TiO2; nanotubes; Lithium-ion battery; Solid-electrolyte interfaces; HIGH-PERFORMANCE LITHIUM; TRANSITION-METAL DICHALCOGENIDES; NITROGEN-DOPED GRAPHENE; COATED MOS2 NANOSHEETS; SODIUM-ION BATTERIES; ANODE MATERIALS; CARBON; HYBRID; NANOCOMPOSITE; MICROSPHERES;
D O I
10.1016/j.cej.2021.129094
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Huge volume expansion and inferior electrical conductivity are the two main obstacles to limit the practical applications of high-capacity molybdenum disulfide (MoS2) materials, which has been recognized as ideal anode materials for rechargeable lithium-ion batteries. Herein, an interfacial reinforcement structure design is proposed by conformally growing few-layered MoS2 nanosheets on carbon coated ultralong TiO2 nanotubes (TiO2@C@MoS2) to stabilize the solid electrolyte interface (SEI) of MoS2-based electrode. The interlayer carbon coating on TiO2 nanotubes effectively improves the interfacial contact between MoS2 nanosheets and TiO2 nanotubes by forming Ti-O-C and C-S chemical bonds between TiO2/carbon coating and MoS2/carbon coating, respectively, avoiding MoS2 nanosheets detaching from TiO2 nanotubes. Meanwhile, the carbon coating serves as a buffering cushion to alleviate mechanical strain at the interface of MoS2 nanosheets and TiO2 nanotubes. Besides, it enhances the adsorption performance of Li ions on the surface of MoS2 and at the interface sites between MoS2 and TiO2. While three-dimensional rigid TiO2 nanotubes networks work as mechanical support to suppress reaggregating and restacking of MoS2 nanosheets, and provide fast transportation expressways for electrons/ions. Thus, the TiO2@C@MoS2 electrode exhibits ultrafast charge/discharge capability, a high reversible capacity of 1150 mAh g(-1) at 0.1 A g(-1), and superior cycling performance with 90% capacity retention after 1500 cycles at 1.0 A g(-1). This interfacial reinforcement structure design provides valuable experience to benefit rational design of alloy/conversion-typed materials electrode with high-performance.
引用
收藏
页数:11
相关论文
共 75 条
[31]   Liquid-exfoliated MoS2 nanosheets/graphene composites with high capacity and excellent cycle stability for lithium-ion batteries [J].
Liu, Hong ;
Liu, Lei ;
Yi, Min ;
Shen, Zhigang ;
Liang, Shuaishuai ;
Zhang, Xiaojing ;
Ma, Shulin .
CHEMICAL ENGINEERING JOURNAL, 2017, 311 :293-301
[32]  
Liu N, 2014, NAT NANOTECHNOL, V9, P187, DOI [10.1038/nnano.2014.6, 10.1038/NNANO.2014.6]
[33]   A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature [J].
Liu, Xizheng ;
Wang, Yahui ;
Yang, Yijun ;
Lv, Wei ;
Lian, Gang ;
Golberg, Dmitri ;
Wang, Xi ;
Zhao, Xian ;
Ding, Yi .
NANO ENERGY, 2020, 70
[34]   Interlayer expanded MoS2 enabled by edge effect of graphene nanoribbons for high performance lithium and sodium ion batteries [J].
Liu, Yang ;
Wang, Xuzhen ;
Song, Xuedan ;
Dong, Yanfeng ;
Yang, Lan ;
Wang, Luxiang ;
Jia, Dianzeng ;
Zhao, Zongbin ;
Qiu, Jieshan .
CARBON, 2016, 109 :461-471
[35]   Accurate Control Multiple Active Sites of Carbonaceous Anode for High Performance Sodium Storage: Insights into Capacitive Contribution Mechanism [J].
Lu, Yun ;
Liang, Jianing ;
Hu, Yezhou ;
Liu, Yi ;
Chen, Ke ;
Deng, Shaofeng ;
Wang, Deli .
ADVANCED ENERGY MATERIALS, 2020, 10 (07)
[36]   Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS2/graphene hybrid with enhanced lithium storage performance [J].
Ma, Lin ;
Ye, Jianbo ;
Chen, Weixiang ;
Chen, Dongyun ;
Lee, Jim Yang .
NANO ENERGY, 2014, 10 :144-152
[37]   Ultrafast charge-discharge characteristics of a nanosized core-shell structured LiFePO4 material for hybrid supercapacitor applications [J].
Naoi, Katsuhiko ;
Kisu, Kazuaki ;
Iwama, Etsuro ;
Nakashima, Shota ;
Sakai, Yuki ;
Orikasa, Yuki ;
Leone, Philippe ;
Dupre, Nicolas ;
Brousse, Thierry ;
Rozier, Patrick ;
Naoi, Wako ;
Simon, Patrice .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (06) :2143-2151
[38]   Construction of MoS2/C Hierarchical Tubular Heterostructures for High-Performance Sodium Ion Batteries [J].
Pan, Qichang ;
Zhang, Qiaobao ;
Zheng, Fenghua ;
Liu, Yanzhen ;
Li, Youpeng ;
Ou, Xing ;
Xiong, Xunhui ;
Yang, Chenghao ;
Liu, Meilin .
ACS NANO, 2018, 12 (12) :12578-12586
[39]   Controlled synthesis of hollow C@TiO2@MoS2 hierarchical nanospheres for high-performance lithium-ion batteries [J].
Pei, Jie ;
Geng, Hongbo ;
Ang, Edison Huixiang ;
Zhang, Lingling ;
Cao, Xueqin ;
Zheng, Junwei ;
Gu, Hongwei .
NANOSCALE, 2018, 10 (36) :17327-17334
[40]   Bowl-like mesoporous polymer-induced interface growth of molybdenum disulfide for stable lithium storage [J].
Qian, Xiaoyong ;
Zhu, Guanjia ;
Wang, Kai ;
Zhang, Fangzhou ;
Liang, Kai ;
Luo, Wei ;
Yang, Jianping .
CHEMICAL ENGINEERING JOURNAL, 2020, 381