Low-temperature solid oxide fuel cells with novel La0.6Sr0.4Co0.8Cu0.2O3-δ perovskite cathode and functional graded anode

被引:32
|
作者
Lin, Bin [1 ]
Chen, Jinfan [1 ]
Ling, Yihan [1 ]
Zhang, Xiaozhen [1 ]
Jiang, Yinzhu [1 ]
Zhao, Ling [1 ]
Liu, Xingqin [1 ]
Meng, Guangyao [1 ]
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
关键词
Low-temperature solid oxide fuel cell; Cathode; Functional graded anode; Perovskite; Dry-pressing; HIGH-PERFORMANCE; ELECTROCHEMICAL PROPERTIES; OXYGEN PERMEATION; SUSPENSION SPRAY; DOPED BACEO3; SOFCS; ELECTROLYTE; MEMBRANES;
D O I
10.1016/j.jpowsour.2009.09.039
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The perovskite La0.6Sr0.4Co0.8Cu0.2O3-delta (LSCCu) oxide is synthesized by a modified Pechini method and examined as a novel cathode material for low-temperature solid oxide fuel cells (LT-SOFCs) based upon functional graded anode. The perovskite LSCCu exhibits excellent ionic and electronic conductivities in the intermediate-to-low-temperature range (400-800 C). Thin Sm0.2Ce0.8O1.9 (SDC) electrolyte and NiO-SDC anode functional layer are prepared over macroporous anode Substrates composed of NiO-SDC by a one-step dry-pressing/co-firing process. A single cell with 20 mu m thick SDC electrolyte on a porous anode support and LSCCu-SDC cathode shows peak power densities of only 583.2 mW cm(-2) at 650 degrees C and 309.4 mW cm(-2) for 550 degrees C While a cell with 20 mu m thick SDC electrolyte and ail anode functional layer on the macroporous anode substrate shows peak power densities of 867.3 and 490.3 mW cm(-2) at 650 and 550 degrees C, respectively. The dramatic improvement of cell performance is attributed to the much improved anode microstructure that is confirmed by both SEM observation and impedance spectroscopy The results indicate that LSCCu is a very promising cathode material for LT-SOFCs and the one-step dry-pressing/co-firing process is a suitable technique to fabricate high performance SOFCs. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1624 / 1629
页数:6
相关论文
共 50 条
  • [1] La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells
    Hartley, A
    Sahibzada, M
    Weston, M
    Metcalfe, IS
    Mantzavinos, D
    CATALYSIS TODAY, 2000, 55 (1-2) : 197 - 204
  • [2] La0.6Sr0.4Co0.2Fe0.8O3-δ-SDC carbonate composite cathodes for low-temperature solid oxide fuel cells
    Abd Rahman, Hamimah
    Muchtar, Andanastuti
    Muhamad, Norhamidi
    Abdullah, Huda
    MATERIALS CHEMISTRY AND PHYSICS, 2013, 141 (2-3) : 752 - 757
  • [3] Synthesis and characterization of La0.6Sr0.4Fe0.8Cu0.2O3-δ oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells
    Vazquez, Santiago
    Davyt, Sebastian
    Basbus, Juan E.
    Soldati, Analia L.
    Amaya, Alejandro
    Serquis, Adriana
    Faccio, Ricardo
    Suescun, Leopoldo
    JOURNAL OF SOLID STATE CHEMISTRY, 2015, 228 : 208 - 213
  • [4] La0.6Sr0.4Fe0.8Cu0.2O3-δ perovskite oxide as cathode for IT-SOFC
    Zhou, Qingjun
    Xu, Le
    Guo, Yajie
    Jia, Dan
    Li, Yan
    Wei, W. C. J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (16) : 11963 - 11968
  • [5] TiO2-modified La0.6Sr0.4Co0.2Fe0.8O3-δ cathode for intermediate temperature solid oxide fuel cells
    Liu, Weixing
    Zhao, Zhe
    Tu, Baofeng
    Cui, Daan
    Ou, Dingrong
    Cheng, Mojie
    CHINESE JOURNAL OF CATALYSIS, 2015, 36 (04) : 502 - 508
  • [6] A simple mechanical process to synthesize La0.6Sr0.4Co0.2Fe0.8O3 perovskite for solid oxide fuel cells cathode
    Xi, Xiuan
    Kondo, Akira
    Naito, Makio
    MATERIALS LETTERS, 2015, 145 : 212 - 215
  • [7] Production of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode with graded porosity for improving proton-conducting solid oxide fuel cells
    Lai, Yi-Wei
    Lee, Kan-Rong
    Yang, Seng-Yu
    Tseng, Chung-Jen
    Jang, Shian-Ching
    Tsao, I-You
    Chen, Szu-yuan
    Lee, Sheng-Wei
    CERAMICS INTERNATIONAL, 2019, 45 (17) : 22479 - 22485
  • [8] In situ sinterable cathode with nanocrystalline La0.6Sr0.4Co0.2Fe0.8O3-δ for solid oxide fuel cells
    Park, Young Min
    Kim, Ju Hee
    Kim, Haekyoung
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (09) : 5617 - 5623
  • [9] Synthesis and Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8O3-δ and BaZr0.8Y0.2O3-δ Electrospun Nanofiber Cathodes for Solid Oxide Fuel Cells
    Chen, Si-Heng
    Zhang, Ting-Ting
    Zhu, Dong-Yang
    Wang, Ning
    Xu, Sheng
    Ramakrishna, Seeram
    Long, Yun-Ze
    ADVANCED ENGINEERING MATERIALS, 2022, 24 (05)
  • [10] Cathode supported tubular solid oxide fuel cells with nanostructured La0.6Sr0.4Co0.2Fe0.8O3 electrocatalysts
    Wu, Liuer
    Zhao, Ling
    Zhan, Zhongliang
    Xia, Changrong
    JOURNAL OF POWER SOURCES, 2014, 266 : 268 - 274