A Comparison of Velocity Skin Effect Modeling With 2-D Transient and 3-D Quasi-Transient Finite Element Methods

被引:6
作者
Tosun, Nail [1 ]
Ceylan, Doga [1 ]
Polat, Hakan [1 ]
Keysan, Ozan [1 ]
机构
[1] Middle East Tech Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey
关键词
Finite element analysis; Rails; Transient analysis; Solid modeling; Current distribution; Atmospheric modeling; Computational modeling; Electromagnetic launchers (EMLs); finite element method (FEM); transient analysis; velocity skin effect (VSE); INDUCTANCE; RAILS;
D O I
10.1109/TPS.2021.3067105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The analysis of the velocity skin effect (VSE) in electromagnetic launchers (EMLs) requires a 3-D transient finite element method, unlike magnetic skin and proximity effects. However, VSE is dominant at high speeds, and this creates convergence problems when moving or deformed mesh physics is used in a transient FEM in the 3-D analysis. Commercial finite element software cannot solve the electromagnetic aspects of such a high-speed application with a transient solver in 3-D. Although 2-D approximations can be used, such an approximation overestimates VSE resistance due to geometry simplifications. In this study, we proposed a novel quasi-transient 3-D FEM model where the air-armature region's conductivity is varied to emulate the high-speed motion of the armature. Results showed that the 2-D approximation overestimates the VSE resistance by almost 40%. The proposed VSE model has been included in the EML model, and simulation results are compared for experimental results with different EMLs, EMFY-1, and EMFY-2 and showed good agreement.
引用
收藏
页码:1500 / 1507
页数:8
相关论文
共 16 条
[1]   Numerical Analysis on the Transient Inductance Gradient of the Resistive Overlay Rail on the Sliding Electrical Contact [J].
An, Sanghyuk ;
Lee, Byungha ;
Bae, Youngseok ;
Lee, Young-Hyun ;
Kim, Seong-Ho .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2019, 47 (05) :2339-2342
[2]   Numerical Analysis of the Transient Inductance Gradient of Electromagnetic Launcher Using 2-D and 3-D Finite-Element Methods [J].
An, Sanghyuk ;
Lee, Byungha ;
Bae, Youngseok ;
Lee, Young-Hyun ;
Kim, Seong-Ho .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2017, 45 (07) :1635-1638
[3]  
[Anonymous], 2018, COMS MULT AC DC MOD, P226
[4]  
[Anonymous], 2012, P 16 INT S EL LAUNCH
[5]   Simulations and Experiments of EMFY-1 Electromagnetic Launcher [J].
Ceylan, Doga ;
Karagoz, Mustafa ;
Cevik, Yasin ;
Yildirim, Baran ;
Polat, Hakan ;
Keysan, Ozan .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2019, 47 (07) :3336-3343
[6]  
Engel T. G., 2008, P 14 S EL LAUNCH TEC, P1
[7]   Characterization of the velocity skin-effect in the surface layer of a railgun sliding contact [J].
Engel, Thomas G. ;
Neri, Jesse M. ;
Veracka, Michael J. .
IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (07) :1837-1844
[8]   A LAGRANGIAN FORMULATION FOR MECHANICALLY, THERMALLY COUPLED ELECTROMAGNETIC DIFFUSIVE PROCESSES WITH MOVING CONDUCTORS [J].
HSIEH, KT .
IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (01) :604-609
[9]   First record of Capnobotrys dingleyae (Metacapnodiaceae) on Taxus baccata for southern Europe [J].
Karadelev, M. ;
Rusevska, K. ;
Venturella, G. ;
Torta, L. ;
Gargano, M. L. .
PLANT BIOSYSTEMS, 2017, 151 (06) :941-943
[10]   ASELSAN Electromagnetic Launch Laboratory: First Shot [J].
Karagoz, Mustafa ;
Civil, Anil ;
Yildirim, Baran ;
Yurdakul, Emre Burak ;
Durna, Emre ;
Tan, Evren ;
Cavbozar, Ozgur ;
Gocmen, Ulas ;
Cevik, Yasin .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2020, 48 (04) :802-807