Homologous non-isotopic symplectic surfaces of higher genus

被引:4
作者
Park, B. Doug [1 ]
Poddar, Mainak
Vidussi, Stefano
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
D O I
10.1090/S0002-9947-07-04168-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an infinite family of homologous, non-isotopic, symplectic surfaces of any genus greater than one in a certain class of closed, simply connected, symplectic four-manifolds. Our construction is the first example of this phenomenon for surfaces of genus greater than one.
引用
收藏
页码:2651 / 2662
页数:12
相关论文
共 19 条
[1]   Luttinger surgery along Lagrangian tori and non-isotopy for singular symplectic plane curves [J].
Auroux, D ;
Donaldson, SK ;
Katzarkov, L .
MATHEMATISCHE ANNALEN, 2003, 326 (01) :185-203
[2]  
Bleiler S A, 1999, GEOM TOPOL MONOGR, V2, P23
[3]  
EISENBUD D, 1985, ANN MATH STUDIES, V20
[4]   Homologous non-isotopic symplectic tori in homotopy rational elliptic surfaces [J].
Etgü, T ;
Park, BD .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 140 :71-78
[5]  
ETGU T, NOTE FUNDAMENTAL GRO
[6]   Nonsymplectic 4-manifolds with one basic class [J].
Fintushel, R ;
Stern, RJ .
PACIFIC JOURNAL OF MATHEMATICS, 2000, 194 (02) :325-333
[7]  
Fintushel R, 1999, J DIFFER GEOM, V52, P203
[8]   Invariants for Lagrangian tori [J].
Fintushel, R ;
Stern, RJ .
GEOMETRY & TOPOLOGY, 2004, 8 :947-968
[9]   Knots, links, and 4-manifolds [J].
Fintushel, R ;
Stern, RJ .
INVENTIONES MATHEMATICAE, 1998, 134 (02) :363-400
[10]  
Gompf R. E., 1999, GRAD STUD MATH, V20