Sufficient Conditions for Graphs to Be k-Connected, Maximally Connected, and Super-Connected

被引:1
作者
Hong, Zhen-Mu [1 ]
Xia, Zheng-Jiang [1 ]
Chen, Fuyuan [2 ]
Volkmann, Lutz [3 ]
机构
[1] Anhui Univ Finance & Econ, Sch Finance, Bengbu 233030, Peoples R China
[2] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233030, Peoples R China
[3] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
VERTEX-CONNECTIVITY; EDGE-CONNECTIVITY; SPECTRAL-RADIUS; EIGENVALUES; GIRTH;
D O I
10.1155/2021/5588146
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph with minimum degree delta(G) and vertex-connectivity kappa (G). The graph G is k-connected if kappa (G) >= k, maximally connected if kappa (G) = delta (G), and super-connected if every minimum vertex-cut isolates a vertex of minimum degree. In this paper, we present sufficient conditions for a graph with given minimum degree to be k-connected, maximally connected, or super-connected in terms of the number of edges, the spectral radius of the graph, and its complement, respectively. Analogous results for triangle-free graphs with given minimum degree to be k-connected, maximally connected, or super-connected are also presented.
引用
收藏
页数:11
相关论文
共 27 条
  • [1] SPECTRAL BOUNDS FOR THE CONNECTIVITY OF REGULAR GRAPHS WITH GIVEN ORDER
    Abiad, Aida
    Brimkov, Boris
    Martinez-Rivera, Xavier
    Suil, O.
    Zhang, Jingmei
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 428 - 443
  • [2] [Anonymous], 2020, Discrete Appl. Math., V279, P118
  • [3] Bondy J.A., 2008, GTM
  • [4] Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs
    Cioab, Sebastian M.
    Gu, Xiaofeng
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (03) : 913 - 924
  • [5] Eigenvalues and edge-connectivity of regular graphs
    Cioaba, Sebastian M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (01) : 458 - 470
  • [6] Edge connectivity, packing spanning trees, and eigenvalues of graphs
    Duan, Cunxiang
    Wang, Ligong
    Liu, Xiangxiang
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (06) : 1077 - 1095
  • [7] Spectral radius and k-connectedness of a graph
    Feng, Lihua
    Zhang, Pengli
    Liu, Weijun
    [J]. MONATSHEFTE FUR MATHEMATIK, 2018, 185 (04): : 651 - 661
  • [8] Spectral conditions for some graphical properties
    Feng, Lihua
    Zhang, Pengli
    Liu, Henry
    Liu, Weijun
    Liu, Minmin
    Hu, Yuqin
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 524 : 182 - 198
  • [9] FIEDLER M, 1973, CZECH MATH J, V23, P298
  • [10] Spectral radius and Hamiltonicity of graphs
    Fiedler, Miroslav
    Nikiforov, Vladimir
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2170 - 2173