The phylogenetic diversity of eukaryotic transcription

被引:35
作者
Coulson, RMR [1 ]
Ouzounis, CA [1 ]
机构
[1] European Bioinformat Inst, Computat Genom Grp, EMBL Cambridge Outstn, Cambridge CB10 1SD, England
基金
英国医学研究理事会;
关键词
D O I
10.1093/nar/gkg156
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotic transcription is a highly regulated process involving interactions between large numbers of proteins. To analyse the phylogenetic distribution of the components of this process, six crown eukaryote group genomes were queried with a reference set of transcription-associated (TA) proteins. On average, one in 10 proteins encoded by these genomes were found to be homologous to sequences in the reference set. Analysis of families identified using an accurate sequence clustering algorithm and containing both TA proteins and eukaryotic sequences showed that in two-thirds of the families the homologues originate from a single kingdom. Furthermore, in only 15% of the fungal-specific clusters are the homologues present in both budding and fission yeast, as compared with the metazoan-specific clusters where 53% of the homologues originate from two or more species. Families whose members comprise general transcription factor or RNA polymerase subunits exhibit a low degree of taxon specificity, suggesting that the transcription initiation complex is highly conserved. This contrasts with transcriptional regulator families, that are primarily taxon-specific, indicating proteins controlling gene activation exhibit considerable sequence diversity across the eukaryotic domain.
引用
收藏
页码:653 / 660
页数:8
相关论文
共 29 条
  • [1] The genome sequence of Drosophila melanogaster
    Adams, MD
    Celniker, SE
    Holt, RA
    Evans, CA
    Gocayne, JD
    Amanatides, PG
    Scherer, SE
    Li, PW
    Hoskins, RA
    Galle, RF
    George, RA
    Lewis, SE
    Richards, S
    Ashburner, M
    Henderson, SN
    Sutton, GG
    Wortman, JR
    Yandell, MD
    Zhang, Q
    Chen, LX
    Brandon, RC
    Rogers, YHC
    Blazej, RG
    Champe, M
    Pfeiffer, BD
    Wan, KH
    Doyle, C
    Baxter, EG
    Helt, G
    Nelson, CR
    Miklos, GLG
    Abril, JF
    Agbayani, A
    An, HJ
    Andrews-Pfannkoch, C
    Baldwin, D
    Ballew, RM
    Basu, A
    Baxendale, J
    Bayraktaroglu, L
    Beasley, EM
    Beeson, KY
    Benos, PV
    Berman, BP
    Bhandari, D
    Bolshakov, S
    Borkova, D
    Botchan, MR
    Bouck, J
    Brokstein, P
    [J]. SCIENCE, 2000, 287 (5461) : 2185 - 2195
  • [2] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [3] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [4] The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000
    Bairoch, A
    Apweiler, R
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 45 - 48
  • [5] Genome sequence of the nematode C-elegans:: A platform for investigating biology
    不详
    [J]. SCIENCE, 1998, 282 (5396) : 2012 - 2018
  • [6] Endless forms: the evolution of gene regulation and morphological diversity
    Carroll, SB
    [J]. CELL, 2000, 101 (06) : 577 - 580
  • [7] Transcription-associated protein families are primarily taxon-specific
    Coulson, RMR
    Enright, AJ
    Ouzounis, CA
    [J]. BIOINFORMATICS, 2001, 17 (01) : 95 - 97
  • [8] Determining divergence times of the major kingdoms of living organisms with a protein clock
    Doolittle, RF
    Feng, DF
    Tsang, S
    Cho, G
    Little, E
    [J]. SCIENCE, 1996, 271 (5248) : 470 - 477
  • [9] Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO)
    Dwight, SS
    Harris, MA
    Dolinski, K
    Ball, CA
    Binkley, G
    Christie, KR
    Fisk, DG
    Issel-Tarver, L
    Schroeder, M
    Sherlock, G
    Sethuraman, A
    Weng, S
    Botstein, D
    Cherry, JM
    [J]. NUCLEIC ACIDS RESEARCH, 2002, 30 (01) : 69 - 72
  • [10] Specificity of gene regulation
    Emerson, BM
    [J]. CELL, 2002, 109 (03) : 267 - 270