Human 5′ UTR design and variant effect prediction from a massively parallel translation assay

被引:229
作者
Sample, Paul J. [1 ]
Wang, Ban [1 ]
Reid, David W. [2 ]
Presnyak, Vlad [2 ]
McFadyen, Iain J. [2 ]
Morris, David R. [3 ]
Seelig, Georg [1 ,4 ]
机构
[1] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
[2] Moderna, Cambridge, MA USA
[3] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[4] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
REGULATORY VARIATION; RNA; INITIATION; PSEUDOURIDINE; MUTATIONS; MECHANISM; REGIONS; SITES;
D O I
10.1038/s41587-019-0164-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The ability to predict the impact of cis-regulatory sequences on gene expression would facilitate discovery in fundamental and applied biology. Here we combine polysome profiling of a library of 280,000 randomized 5' untranslated regions (UTRs) with deep learning to build a predictive model that relates human 5' UTR sequence to translation. Together with a genetic algorithm, we use the model to engineer new 5' UTRs that accurately direct specified levels of ribosome loading, providing the ability to tune sequences for optimal protein expression. We show that the same approach can be extended to chemically modified RNA, an important feature for applications in mRNA therapeutics and synthetic biology. We test 35,212 truncated human 5' UTRs and 3,577 naturally occurring variants and show that the model predicts ribosome loading of these sequences. Finally, we provide evidence of 45 single-nucleotide variants (SNVs) associated with human diseases that substantially change ribosome loading and thus may represent a molecular basis for disease.
引用
收藏
页码:803 / +
页数:10
相关论文
共 50 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[3]   Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation [J].
Anderson, Bart R. ;
Muramatsu, Hiromi ;
Nallagatla, Subba R. ;
Bevilacqua, Philip C. ;
Sansing, Lauren H. ;
Weissman, Drew ;
Kariko, Katalin .
NUCLEIC ACIDS RESEARCH, 2010, 38 (17) :5884-5892
[4]   Deep learning for computational biology [J].
Angermueller, Christof ;
Parnamaa, Tanel ;
Parts, Leopold ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
[5]  
[Anonymous], PREPRINT
[6]  
[Anonymous], HEREDITARY COPROPORP
[7]  
[Anonymous], PREPRINT
[8]   Before It Gets Started: Regulating Translation at the 5′ UTR [J].
Araujo, Patricia R. ;
Yoon, Kihoon ;
Ko, Daijin ;
Smith, Andrew D. ;
Qiao, Mei ;
Suresh, Uthra ;
Burns, Suzanne C. ;
Penalva, Luiz O. F. .
COMPARATIVE AND FUNCTIONAL GENOMICS, 2012,
[9]   Impact of regulatory variation from RNA to protein [J].
Battle, Alexis ;
Khan, Zia ;
Wang, Sidney H. ;
Mitrano, Amy ;
Ford, Michael J. ;
Pritchard, Jonathan K. ;
Gilad, Yoav .
SCIENCE, 2015, 347 (6222) :664-667
[10]   A Deep Neural Network for Predicting and Engineering Alternative Polyadenylation [J].
Bogard, Nicholas ;
Linder, Johannes ;
Rosenberg, Alexander B. ;
Seelig, Georg .
CELL, 2019, 178 (01) :91-+