Sponge-Like Li4Ti5O12 Constructed on Graphene for High Li Electroactivities

被引:3
|
作者
Bae, Seongjun [1 ,2 ]
Nam, Inho [1 ,2 ]
Park, Soomin [1 ,2 ]
Yoo, Young Geun [1 ,2 ]
Park, Jongseok [1 ,2 ]
Lee, Jong Min [1 ,2 ]
Han, Jeong Woo [3 ]
Yi, Jongheop [1 ,2 ]
机构
[1] World Class Univ, Seoul Natl Univ, Inst Chem Proc, Program Chem Convergence Energy & Environm C2E2, Seoul 151742, South Korea
[2] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 151742, South Korea
[3] Univ Seoul, Dept Chem Engn, Seoul 130743, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium Ion Battery; Anode; Li4Ti5O12; Graphene; Nanostructure; LITHIUM ION BATTERY; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; OXIDE NANOCOMPOSITE; COMPOSITES; CATHODES;
D O I
10.1166/jnn.2017.12447
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A sponge-like Li4Ti5O12/graphene composite was prepared via sequential hydrothermal process and solid-state heat treatment process for the application to high-power lithium ion batteries. The as-prepared electrode showed outstanding Li electroactivities with a rapid and reversible Li insertion/extraction of up to 10 C-rate (1.75 A/g). It delivered a discharge capacity of 174 mAh/g at 0.5 C, near the theoretical capacity of Li4Ti5O12, with good rate capability and cyclic stability. First-principles calculations revealed the intimate interaction of the Li4Ti5O12 and graphene, which implies that graphene functions as an 'electron tunnel.' Electrochemical impedance spectroscopy also proved that the graphene-hybridization and the unique structure of the Li4Ti5O12 material significantly reduce the resistive behavior of electrodes. The 3D structured Li4Ti5O12/graphene hybrid reported herein could be a promising candidate for a safe, low-cost, high-power anode for lithium ion batteries, and our seeding-growth-sintering method for decorating graphene with active material will offer an effective upgrade on highly insulating Li4Ti5O12 materials.
引用
收藏
页码:588 / 593
页数:6
相关论文
共 50 条
  • [41] Application of quaternary polymer electrolyte based on ionic liquid in LiFePO4/Li, Li4Ti5O12/Li and LiFePO4/Li4Ti5O12 batteries
    Swiderska-Mocek, Agnieszka
    ELECTROCHIMICA ACTA, 2014, 139 : 337 - 344
  • [42] Carbon Coating with Oleic Acid on Li4Ti5O12
    Gu, Fang
    Chen, Gang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2012, 7 (07): : 6168 - 6179
  • [43] Solid-state synthesis of Li4Ti5O12 for high power lithium ion battery applications
    Han, Seung-Woo
    Ryu, Ji Heon
    Jeong, Joayoung
    Yoon, Dang-Hyok
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 570 : 144 - 149
  • [44] Synthesis and Performance Research of Li4Ti5O12/CNTs Anode Materials
    He, Hong-ming
    Fang, Jian-hui
    Liu, Hai-dong
    Liu, Hong-jiang
    Shi, Li-yi
    PROCEEDINGS OF THE 7TH NATIONAL CONFERENCE ON CHINESE FUNCTIONAL MATERIALS AND APPLICATIONS (2010), VOLS 1-3, 2010, : 670 - 673
  • [45] Improved Li4Ti5O12 electrodes by modified current collector surface
    Toigo, Christina
    Frankenberger, Martin
    Billot, Nicolas
    Pscherer, Claudia
    Stumper, Benedikt
    Distelrath, Fabian
    Schubert, Jonathan
    Pettinger, Karl-Heinz
    Arbizzani, Catia
    ELECTROCHIMICA ACTA, 2021, 392
  • [46] The influence of Li2O incorporation on the electrochemical properties of Li4Ti5O12 thin film electrodes
    Xiao, Cheng-Fan
    Kim, Jong Heon
    Choi, Daehwan
    Park, Yun Chang
    Kim, Jung Hyun
    Park, Jozeph
    Kim, Yong Joo
    Kim, Hyun-Suk
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 801 : 550 - 557
  • [47] Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle
    Kai Wu
    Jun Yang
    Yao Zhang
    Chenyun Wang
    Deyu Wang
    Journal of Applied Electrochemistry, 2012, 42 : 989 - 995
  • [48] Progress of Li4Ti5O12 anode material for lithium ion batteries
    Lin, X.
    Pan, F.
    Wang, H.
    MATERIALS TECHNOLOGY, 2014, 29 (A2) : A82 - A87
  • [49] Temperature effect on spinel Li4Ti5O12 as anode materials for lithium ion batteries
    Zhang, Zhenwei
    Cao, Liyun
    Huang, Jianfeng
    Wang, Dunqiang
    Meng, Yan
    Cai, Yingjun
    ELECTROCHIMICA ACTA, 2013, 88 : 443 - 446
  • [50] Synthesis and electrochemical performance of Li4Ti5O12/Ag composite prepared by electroless plating
    Li, Jun
    Huang, Si
    Li, Shaofang
    Xu, Shuaijun
    Pan, Chunyang
    CERAMICS INTERNATIONAL, 2017, 43 (02) : 1650 - 1656