Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy

被引:103
作者
Ossmann, Barbara E. [1 ,2 ]
Sarau, George [3 ,4 ]
Schmitt, Sebastian W. [3 ,4 ]
Holtmannspoetter, Heinrich [1 ]
Christiansen, Silke H. [4 ,5 ]
Dicke, Wilhelm [1 ]
机构
[1] Bavarian Food Safety Author, Eggenreuther Weg 43, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Emil Fischer Ctr, Dept Chem & Pharm, Henriette Schmidt Burkhardt Chair Food Chem, Schuhstr 19, D-91052 Erlangen, Germany
[3] Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Nanoarchitekturen & Energieumwandlung, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[4] Max Planck Inst Sci Light, Staudtstr 2, D-91058 Erlangen, Germany
[5] Free Univ Berlin, Phys Dept, Arnimallee 14, D-14195 Berlin, Germany
关键词
Microplastics; Food; Micro-Raman spectroscopy; Aluminium; Polycarbonate membrane filter; Substrate; FTIR;
D O I
10.1007/s00216-017-0358-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 mu m. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 mu m becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified.
引用
收藏
页码:4099 / 4109
页数:11
相关论文
共 22 条
[1]   Presence of microplastics and nanoplastics in food, with particular focus on seafood [J].
Alexander, Jan ;
Barregard, Lars ;
Bignami, Margherita ;
Ceccatelli, Sandra ;
Cottrill, Bruce ;
Dinovi, Michael ;
Edler, Lutz ;
Grasl-Kraupp, Bettina ;
Hogstrand, Christer ;
Hoogenboom, Laurentius ;
Knutsen, Helle Katrine ;
Nebbia, Carlo Stefano ;
Oswald, Isabelle ;
Petersen, Annette ;
Rogiers, Vera Maria ;
Rose, Martin ;
Roudot, Alain-Claude ;
Schwerdtle, Tanja ;
Vleminckx, Christiane ;
Vollmer, Gunter ;
Wallace, Heather .
EFSA JOURNAL, 2016, 14 (06)
[2]   Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks [J].
Browne, Mark Anthony ;
Crump, Phillip ;
Niven, Stewart J. ;
Teuten, Emma ;
Tonkin, Andrew ;
Galloway, Tamara ;
Thompson, Richard .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (21) :9175-9179
[3]   Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs [J].
Eerkes-Medrano, Dafne ;
Thompson, Richard C. ;
Aldridge, David C. .
WATER RESEARCH, 2015, 75 :63-82
[4]   Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea [J].
Eriksen, Marcus ;
Lebreton, Laurent C. M. ;
Carson, Henry S. ;
Thiel, Martin ;
Moore, Charles J. ;
Borerro, Jose C. ;
Galgani, Francois ;
Ryan, Peter G. ;
Reisser, Julia .
PLOS ONE, 2014, 9 (12)
[5]   Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.) [J].
Farrell, Paul ;
Nelson, Kathryn .
ENVIRONMENTAL POLLUTION, 2013, 177 :1-3
[6]   A semi-automated Raman micro-spectroscopy method for morphological and chemical characterizations of microplastic litter [J].
Frere, L. ;
Paul-Pont, I. ;
Moreau, J. ;
Soudant, P. ;
Lambert, C. ;
Huvet, A. ;
Rinnert, E. .
MARINE POLLUTION BULLETIN, 2016, 113 (1-2) :461-468
[7]  
Heinzler M, 1999, TABELLENBUCH METALL
[8]  
Humpf H-U., 2016, NACHR CHEM, DOI [10.1002/nadc.20164052892, DOI 10.1002/NADC.20164052892]
[9]   Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes [J].
Imhof, Hannes K. ;
Laforsch, Christian ;
Wiesheu, Alexandra C. ;
Schmid, Johannes ;
Anger, Philipp M. ;
Niessner, Reinhard ;
Ivleva, Natalia P. .
WATER RESEARCH, 2016, 98 :64-74
[10]   Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? [J].
Kaeppler, Andrea ;
Fischer, Dieter ;
Oberbeckmann, Sonja ;
Schernewski, Gerald ;
Labrenz, Matthias ;
Eichhorn, Klaus-Jochen ;
Voit, Brigitte .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2016, 408 (29) :8377-8391