Effective Multi-label Classification Method for Multidimensional Datasets

被引:6
作者
Glinka, Kinga [1 ]
Zakrzewska, Danuta [1 ]
机构
[1] Lodz Univ Technol, Inst Informat Technol, Wolczanska 215, PL-90924 Lodz, Poland
来源
FLEXIBLE QUERY ANSWERING SYSTEMS 2015 | 2016年 / 400卷
关键词
Multi-label classification; Labels chain; Machine learning; Problem transformation methods;
D O I
10.1007/978-3-319-26154-6_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification, contrarily to the traditional single-label one, aims at predicting more than one predefined class label for data instances. Multi-label classification problems very often concern multidimensional datasets where number of attributes significantly exceeds relatively small number of instances. In the paper, new effective problem transformation method which deals with such cases is introduced. The proposed Labels Chain (LC) algorithm is based on relationship between labels, and consecutively uses result labels as new attributes in the following classification process. Experiments conducted on several multidimensional datasets showed the good performance of the presented method, taking into account predictive accuracy and computation time. The obtained results are compared with those obtained by the most popular Binary Relevance (BR) and Label Power-set (LP) algorithms.
引用
收藏
页码:127 / 138
页数:12
相关论文
共 50 条
  • [21] Multi-label Deepfake Classification
    Singh, Inder Pal
    Mejri, Nesryne
    Nguyen, Van Dat
    Ghorbel, Enjie
    Aouada, Djamila
    2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,
  • [22] Boosting-based Multi-label Classification
    Kajdanowicz, Tomasz
    Kazienko, Przemyslaw
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2013, 19 (04) : 502 - 520
  • [23] Scalable Multi-Label Arabic Text Classification
    Ahmed, Nizar A.
    Shehab, Mohammed A.
    Al-Ayyoub, Mahmoud
    Hmeidi, Ismail
    2015 6TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2015, : 212 - 217
  • [24] Biclustering-based multi-label classification
    Schmitke, Luiz Rafael
    Paraiso, Emerson Cabrera
    Nievola, Julio Cesar
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (08) : 4861 - 4898
  • [25] Effects of the hierarchy in hierarchical, multi-label classification
    Daisey, Katie
    Brown, Steven D.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 207
  • [26] Multi-label arabic text classification: an overview
    Aljedani N.
    Alotaibi R.
    Taileb M.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (10): : 694 - 706
  • [27] Multi-Label Arabic Text Classification: An Overview
    Aljedani, Nawal
    Alotaibi, Reem
    Taileb, Mounira
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (10) : 694 - 706
  • [28] A Simple Approach to Incorporate Label Dependency in Multi-label Classification
    Cherman, Everton Alvares
    Metz, Jean
    Monard, Maria Carolina
    ADVANCES IN SOFT COMPUTING - MICAI 2010, PT II, 2010, 6438 : 33 - 43
  • [29] MLHN: A Hypernetwork Model for Multi-Label Classification
    Sun, Kai-Wei
    Lee, Chong Ho
    Xie, Xiao-Feng
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (06)
  • [30] A Survey of Genetic Algorithms for Multi-Label Classification
    Goncalves, Eduardo Correa
    Freitas, Alex A.
    Plastino, Alexandre
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 981 - 988