Effective Multi-label Classification Method for Multidimensional Datasets

被引:6
作者
Glinka, Kinga [1 ]
Zakrzewska, Danuta [1 ]
机构
[1] Lodz Univ Technol, Inst Informat Technol, Wolczanska 215, PL-90924 Lodz, Poland
来源
FLEXIBLE QUERY ANSWERING SYSTEMS 2015 | 2016年 / 400卷
关键词
Multi-label classification; Labels chain; Machine learning; Problem transformation methods;
D O I
10.1007/978-3-319-26154-6_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification, contrarily to the traditional single-label one, aims at predicting more than one predefined class label for data instances. Multi-label classification problems very often concern multidimensional datasets where number of attributes significantly exceeds relatively small number of instances. In the paper, new effective problem transformation method which deals with such cases is introduced. The proposed Labels Chain (LC) algorithm is based on relationship between labels, and consecutively uses result labels as new attributes in the following classification process. Experiments conducted on several multidimensional datasets showed the good performance of the presented method, taking into account predictive accuracy and computation time. The obtained results are compared with those obtained by the most popular Binary Relevance (BR) and Label Power-set (LP) algorithms.
引用
收藏
页码:127 / 138
页数:12
相关论文
共 50 条
[21]   Boosting-based Multi-label Classification [J].
Kajdanowicz, Tomasz ;
Kazienko, Przemyslaw .
JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2013, 19 (04) :502-520
[22]   Scalable Multi-Label Arabic Text Classification [J].
Ahmed, Nizar A. ;
Shehab, Mohammed A. ;
Al-Ayyoub, Mahmoud ;
Hmeidi, Ismail .
2015 6TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2015, :212-217
[23]   A Simple Approach to Incorporate Label Dependency in Multi-label Classification [J].
Cherman, Everton Alvares ;
Metz, Jean ;
Monard, Maria Carolina .
ADVANCES IN SOFT COMPUTING - MICAI 2010, PT II, 2010, 6438 :33-43
[24]   Effects of the hierarchy in hierarchical, multi-label classification [J].
Daisey, Katie ;
Brown, Steven D. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 207
[25]   Biclustering-based multi-label classification [J].
Schmitke, Luiz Rafael ;
Paraiso, Emerson Cabrera ;
Nievola, Julio Cesar .
KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (08) :4861-4898
[26]   A Survey of Genetic Algorithms for Multi-Label Classification [J].
Goncalves, Eduardo Correa ;
Freitas, Alex A. ;
Plastino, Alexandre .
2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, :981-988
[27]   MLHN: A Hypernetwork Model for Multi-Label Classification [J].
Sun, Kai-Wei ;
Lee, Chong Ho ;
Xie, Xiao-Feng .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (06)
[28]   Multi-label arabic text classification: an overview [J].
Aljedani N. ;
Alotaibi R. ;
Taileb M. .
International Journal of Advanced Computer Science and Applications, 2020, 11 (10) :694-706
[29]   Multi-Label Arabic Text Classification: An Overview [J].
Aljedani, Nawal ;
Alotaibi, Reem ;
Taileb, Mounira .
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (10) :694-706
[30]   On Multi-Label Classification for Non-Intrusive Load Identification using Low Sampling Frequency Datasets [J].
Ahajjam, Mohamed Aymane ;
Essayeh, Chaimaa ;
Ghogho, Mounir ;
Kobbane, Abdellatif .
2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,