Content-based Image Retrieval for Scientific Literature Access

被引:15
作者
Deserno, T. M. [1 ,2 ]
Antani, S. [2 ]
Long, L. Rodney [2 ]
机构
[1] Aachen Univ Technol RWTH, Dept Med Informat, D-52057 Aachen, Germany
[2] US Natl Inst Hlth, US Natl Lib Med, Bethesda, MD USA
关键词
Content-based image retrieval (CBIR); scientific literature; information system integration; radiology; data mining; information retrieval; MEDICAL IMAGES; CLASSIFICATION; CATEGORIZATION; DATABASES; SYSTEMS;
D O I
10.3414/ME0561
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objectives: An increasing number of articles are published electronically in the scientific literature, but access is limited to alphanumerical search on title, author, or abstract, and may disregard numerous figures. In this paper, we estimate the benefits of using content-based image retrieval (CBIR) on article figures to augment traditional access to articles. Methods: We selected four high-impact (JCR) 2005. Figures were automatically extracted from the PDF article files, and manually classified on their content and number of sub-figure panels. We make a quantitative estimate by projecting from data from the Cross-Language Evaluation Forum (Image-CLEF) campaigns, and qualitatively validate it through experiments using the Image Retrieval in Medical Applications (IRMA) project. Results: Based on 2077 articles with 11,753 pages, 4493 figures, and 11,238 individual images, the predicted accuracy for article retrieval may reach 97.08%. Conclusions: Therefore, CBIR potentially has a high impact in medical literature search and retrieval.
引用
收藏
页码:371 / 380
页数:10
相关论文
共 50 条
[31]   Dynamic Exploratory Search in Content-Based Image Retrieval [J].
Pyykko, Joel ;
Glowacka, Dorota .
IMAGE ANALYSIS, SCIA 2017, PT I, 2017, 10269 :538-549
[32]   Unsupervised rank diffusion for content-based image retrieval [J].
Guimaraes Pedronette, Daniel Carlos ;
Torres, Ricardo da S. .
NEUROCOMPUTING, 2017, 260 :478-489
[33]   Content-based histopathology image retrieval using CometCloud [J].
Qi, Xin ;
Wang, Daihou ;
Rodero, Ivan ;
Diaz-Montes, Javier ;
Gensure, Rebekah H. ;
Xing, Fuyong ;
Zhong, Hua ;
Goodell, Lauri ;
Parashar, Manish ;
Foran, David J. ;
Yang, Lin .
BMC BIOINFORMATICS, 2014, 15
[34]   Multilayer Architecture for Content-based Image Retrieval Systems [J].
Grycuk, Rafal ;
Najgebauer, Patryk ;
Nowicki, Robert ;
Scherer, Rafal .
2019 IEEE 12TH CONFERENCE ON SERVICE-ORIENTED COMPUTING AND APPLICATIONS (SOCA 2019), 2019, :119-126
[35]   RETIN: A content-based image indexing and retrieval system [J].
Fournier, J ;
Cord, M ;
Philipp-Foliguet, S .
PATTERN ANALYSIS AND APPLICATIONS, 2001, 4 (2-3) :153-173
[36]   Local quantized extrema patterns for content-based natural and texture image retrieval [J].
Rao, L. Koteswara ;
Rao, D. Venkata .
HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2015, 5
[37]   Efficient content-based image retrieval using deep search and rescue algorithm [J].
Keisham, Nepoleon ;
Neelima, Arambam .
SOFT COMPUTING, 2022, 26 (04) :1597-1616
[38]   Generic integration of content-based image retrieval in computer-aided diagnosis [J].
Weltera, Petra ;
Fischer, Benedikt ;
Guenther, Rolf W. ;
Deserno , Thomas M. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (02) :589-599
[39]   MammoSys: A content-based image retrieval system using breast density patterns [J].
de Oliveira, Julia E. E. ;
Machado, Alexei M. C. ;
Chavez, Guillermo C. ;
Lopes, Ana Paula B. ;
Deserno, Thomas M. ;
Araujo, Arnaldo de A. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2010, 99 (03) :289-297
[40]   Efficient content-based image retrieval using deep search and rescue algorithm [J].
Nepoleon Keisham ;
Arambam Neelima .
Soft Computing, 2022, 26 :1597-1616