A fixed point theorem for Whitney blocks

被引:3
作者
Bustamante, J [1 ]
Escobedo, R [1 ]
Macías-Romero, F [1 ]
机构
[1] BUAP, Fac Ciencias Fis Matemat, Puebla 72570, Mexico
关键词
fixed point property; hyperspaces; induced maps; s-connectedness; semispan; universal maps; Whitney blocks;
D O I
10.1016/S0166-8641(01)00284-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
General theorems concerning s-connectedness and hyperspaces are first obtained. These results are applied to prove that: for a continuum X having zero surjective semispan, (1) each Whitney block in the hyperspace of subcontinua of X, C(X), has the fixed point property and (2) if f : Y --> X is map from a continuum Y onto X, then the induced map (f) over cap : C(Y) --> C(X) is universal. Both results provide new proofs to some theorems for arc-like continua. The first one answers a question asked by Nadler. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:315 / 321
页数:7
相关论文
共 19 条
[1]  
[Anonymous], FUND MATH
[2]  
COOK H, 1995, LECT NOTES PURE APPL, V170
[3]  
HOLSZTYNSKI W, 1967, B ACAD POL SCI SMAP, V15, P433
[4]  
Hosokawa H, 1999, HOUSTON J MATH, V25, P35
[5]  
Illanes A., 1999, Monographs and Textbooks in Pure and Applied Math., V216
[6]  
ILLANES A, IN PRESS P CONT THEO
[7]  
KRASINKIEWICZ J, 1974, FUND MATH, V83, P155
[8]  
Lelek A., 1964, FUND MATH, V55, P199
[9]  
Lelek A., 1977, C MATH, V37, P35
[10]   Some generalizations of universal mappings [J].
Marsh, MM .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) :1187-1198