Comparison, symmetry and monotonicity results for some degenerate elliptic operators in Carnot-Caratheodory spaces

被引:1
作者
Ge, YX
Ye, D
Zhou, F
机构
[1] Univ Paris 12, Fac Sci & Technol, Dept Math, F-94010 Creteil, France
[2] ENS, CMLA, F-94235 Cachan, France
[3] St Martin Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
[4] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
关键词
Carnot-Caratheodory space; symmetry; monotonicity; degenerate elliptic operator;
D O I
10.1142/S025295990200033X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the properties of solutions of quasilinear equations involving the p-laplacian type operator in general Carnot-Caratheodory spaces. The authors show some comparison results for solutions of the relevant differential inequalities and use them to get some symmetry and monotonicity properties of solutions, in bounded or unbounded domains.
引用
收藏
页码:361 / 372
页数:12
相关论文
共 20 条
  • [11] Garofalo N, 1996, COMMUN PUR APPL MATH, V49, P1081, DOI 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO
  • [12] 2-A
  • [13] GE Y, 2001, ADV DIFF EQUA, V6, P51
  • [14] SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE
    GIDAS, B
    NI, WM
    NIRENBERG, L
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) : 209 - 243
  • [15] Gidas B., 1981, Math Anal Appl, Part A: Advances in Math Suppl Studied, V7, P369
  • [16] Gromov M., 1996, Sub-Riemannian geometry, V144, P79, DOI DOI 10.1007/978-3-0348-9210-0_2
  • [17] Hajlasz P, 2000, MEM AM MATH SOC, V145, pIX
  • [18] THE POINCARE INEQUALITY FOR VECTOR-FIELDS SATISFYING HORMANDER CONDITION
    JERISON, D
    [J]. DUKE MATHEMATICAL JOURNAL, 1986, 53 (02) : 503 - 523
  • [19] BALLS AND METRICS DEFINED BY VECTOR-FIELDS .1. BASIC PROPERTIES
    NAGEL, A
    STEIN, EM
    WAINGER, S
    [J]. ACTA MATHEMATICA, 1985, 155 (1-2) : 103 - 147
  • [20] STRICHARTZ RS, 1986, J DIFFER GEOM, V24, P221