To understand the phenomenon of fullerene growth during its synthesis, an attempt is made to model a minimum energy growth route using a semi-empirical quantum mechanics code. C-2 addition leading to C-60 was modelled and three main routes, i.e. cyclic ring growth, pentagon and fullerene road, were studied. The growth starts with linear chains and, at n = 10, ring structures begins to dominate. The rings continue to grow and, at some point n > 30, they transform into close-cage fullerenes and the growth is shown to progress by the fullerene road until C60 is formed. The computer simulations predict a transition from a C-38 ring to fullerene. Other growth mechanisms could also occur in the energetic environment commonly encountered in fullerene synthesis, but our purpose was to identify a minimal energy route which is the most probable structure. Our results also indicate that, at n = 20, the corannulene structure is energetically more stable than the corresponding fullerene and graphene sheet, however a ring structure has lower energy among all the structures up to n <= 40. Additionally, we have also proved that the fullerene road is energetically more favoured than the pentagon road. The overall growth leading to cage closure for n = 60 may not occur by a single route but by a combination of more than one route.