Structure-Preserving Numerical Methods for Stochastic Poisson Systems

被引:5
|
作者
Hong, Jialin [1 ]
Ruan, Jialin [2 ]
Sun, Liying [1 ]
Wang, Lijin [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, 19 YuQuan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic Poisson systems; Poisson structure; Casimir functions; Poisson integrators; symplectic integrators; generating functions; stochastic rigid body system; HAMILTONIAN-SYSTEMS; SYMPLECTIC SCHEMES; INTEGRATORS; EQUATION;
D O I
10.4208/cicp.OA-2019-0084
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a numerical integration methodology for stochastic Poisson systems (SPSs) of arbitrary dimensions and multiple noises with different Hamiltonians in diffusion coefficients, which can provide numerical schemes preserving both the Poisson structure and the Casimir functions of the SPSs, based on the Darboux-Lie theorem. We first transform the SPSs to their canonical form, the generalized stochastic Hamiltonian systems (SHSs), via canonical coordinate transformations found by solving certain PDEs defined by the Poisson brackets of the SPSs. An alpha-generating function approach with alpha is an element of [0,1] is then constructed and used to create symplectic schemes for the SHSs, which are then transformed back by the inverse coordinate transformation to become stochastic Poisson integrators of the original SPSs. Numerical tests on a three-dimensional stochastic rigid body system illustrate the efficiency of the proposed methods.
引用
收藏
页码:802 / 830
页数:29
相关论文
共 50 条
  • [31] Structure-preserving interpolation of bilinear control systems
    Peter Benner
    Serkan Gugercin
    Steffen W. R. Werner
    Advances in Computational Mathematics, 2021, 47
  • [32] Structure-Preserving Algorithms for a Class of Dynamical Systems
    Ling-shu Wang School of Mathematics and Statistics
    ActaMathematicaeApplicataeSinica, 2007, (01) : 161 - 176
  • [33] Structure-preserving algorithms for autonomous Birkhoffian systems
    孔新雷
    吴惠彬
    梅凤翔
    Journal of Beijing Institute of Technology, 2012, 21 (01) : 1 - 7
  • [34] Structure-preserving stabilization of Hamiltonian control systems
    Abeber, H.
    Katzschmann, M.
    Systems and Control Letters, 1994, 22 (04): : 281 - 285
  • [35] Structure-preserving interpolation of bilinear control systems
    Benner, Peter
    Gugercin, Serkan
    Werner, Steffen W. R.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (03)
  • [36] Structure-preserving algorithms for a class of dynamical systems
    Wang, Ling-shu
    Feng, Guang-hui
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (01): : 161 - 176
  • [37] Structure-Preserving Algorithms for a Class of Dynamical Systems
    Ling-shu Wang
    Guang-hui Feng
    Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 : 161 - 176
  • [38] A novel, structure-preserving, second-order-in-time relaxation scheme for Schrodinger-Poisson systems
    Athanassoulis, Agissilaos
    Katsaounis, Theodoros
    Kyza, Irene
    Metcalfe, Stephen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 490
  • [39] Convergence Analysis on a Structure-Preserving Numerical Scheme for the Poisson-Nernst-Planck- Cahn-Hilliard System
    Qian, Yiran
    Wang, Cheng
    Zhou, Shenggao
    CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2023, 4 (02): : 345 - 380
  • [40] STRUCTURE-PRESERVING EXPONENTIAL RUNGE-KUTTA METHODS
    Bhatt, Ashish
    Moore, Brian E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (02): : A593 - A612