EXACT SAMPLING OF THE INFINITE HORIZON MAXIMUM OF A RANDOM WALK OVER A NONLINEAR BOUNDARY

被引:0
作者
Blanchet, Jose [1 ]
Dong, Jing [2 ]
Liu, Zhipeng [3 ]
机构
[1] Stanford Univ, 475 Via Ortega, Stanford, CA 94305 USA
[2] Columbia Univ, Decis Risk & Operat Div, 3022 Broadway, New York, NY 10027 USA
[3] Columbia Univ, Dept Ind Engn & Operat Res, 500 West 120th St, New York, NY 10027 USA
关键词
Exact simulation; Monte Carlo; queueing theory; random walk;
D O I
10.1017/jpr.2019.9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present the first algorithm that samples max(n >= 0){S-n - n(alpha)}, where S-n is a mean zero random walk, and n(alpha) with alpha is an element of (1/2, 1) defines a nonlinear boundary. We show that our algorithm has finite expected running time. We also apply this algorithm to construct the first exact simulation method for the steady-state departure process of a GI/GI/infinity queue where the service time distribution has infinite mean.
引用
收藏
页码:116 / 138
页数:23
相关论文
共 10 条
[1]  
Asmussen S., 2003, Applied Probability and Queues
[2]   Perfect sampling of GI/GI/c queues [J].
Blanchet, Jose ;
Dong, Jing ;
Pei, Yanan .
QUEUEING SYSTEMS, 2018, 90 (1-2) :1-33
[3]   Exact Sampling of Stationary and Time-Reversed Queues [J].
Blanchet, Jose ;
Wallwater, Aya .
ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2015, 25 (04)
[4]   STEADY-STATE SIMULATION OF REFLECTED BROWNIAN MOTION AND RELATED STOCHASTIC NETWORKS [J].
Blanchet, Jose ;
Chen, Xinyun .
ANNALS OF APPLIED PROBABILITY, 2015, 25 (06) :3209-3250
[5]   PERFECT SAMPLING FOR INFINITE SERVER AND LOSS SYSTEMS [J].
Blanchet, Jose ;
Dong, Jing .
ADVANCES IN APPLIED PROBABILITY, 2015, 47 (03) :761-786
[6]   Simulating the maximum of a random walk [J].
Ensor, KB ;
Glynn, PW .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 85 (1-2) :127-135
[7]  
Ganesh A., 2004, Lecture Notes in Mathematics, V1838
[8]  
KENDALL W. S., 1998, Probability towards 2000, P218, DOI 10.1007/978-1-4612-2224-8_13
[9]  
Propp JG, 1996, RANDOM STRUCT ALGOR, V9, P223, DOI 10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO
[10]  
2-O