Experimental and numerical analysis of residual load-carrying capacity of cross-laminated timber walls after fire

被引:16
|
作者
Bai, Yu [1 ,2 ]
Zhang, Jin [1 ,2 ]
Shen, Hao [3 ]
机构
[1] Southeast Univ, Key Lab Concrete & Prestressed Concrete Struct, Minist Educ, Nanjing 211189, Peoples R China
[2] Southeast Univ, Sch Civil Engn, Nanjing 211189, Peoples R China
[3] East China Architectural Design & Res Inst, Shanghai 200002, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Cross-laminated timber; Wall; Residual load-carrying capacity; After fire; Numerical model; STRENGTH; ELEMENTS; CONSTRUCTION; BEHAVIOR; WOOD;
D O I
10.1016/j.istruc.2020.12.086
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Cross-laminated timber (CLT) panels are widely used as structural members applied in a range of modern timber buildings. Changes in the load-carrying capacity of CLT walls after exposure to fire need to be discussed and summarized, but few studies have considered this due to a lack of available measurements and the prohibitive cost of performing the relevant experiments. To investigate the residual load-carrying capacity of CLT walls after fire, the multiple tests including axial compression tests under the ambient condition, standard fire tests and residual load-carrying capacity tests after fire were performed, and a numerical approach was developed in this study. The appropriate constitutive relationship and mechanical properties of timber affected by temperature were adopted, and the corresponding user-defined material subroutine was coded in ABAQUS and verified by typical examples. It was shown that the numerical models could reproduce adequately the failure process and mechanical behavior of the CLT specimens tested. The validated numerical method was used to carry out a parametric prediction that revealed the influence of the number of layers and the combustion time on the residual load-carrying capacity after fire. Moreover, the presented results could serve as a reference for the structural fire safety design of CLT structures.
引用
收藏
页码:50 / 61
页数:12
相关论文
共 50 条
  • [1] Residual compressive load-carrying capacity of cross-laminated timber walls after exposed to one-side fire
    Bai, Yu
    Zhang, Jin
    Shen, Hao
    JOURNAL OF BUILDING ENGINEERING, 2021, 34
  • [2] Load-carrying capacity prediction of single rods glued into cross-laminated timber
    Vallee, Till
    Rakesh, Hossahalli Ramesh
    Tannert, Thomas
    EUROPEAN JOURNAL OF WOOD AND WOOD PRODUCTS, 2022, 80 (05) : 1041 - 1055
  • [3] Structural fire engineering considerations for cross-laminated timber walls
    Wiesner, Felix
    Hadden, Rory
    Deeny, Susan
    Bisby, Luke
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 323
  • [4] Experimental and numerical analysis on fire behaviour of loaded cross-laminated timber panels
    Wang, Yuexiang
    Zhang, Jin
    Mei, Fang
    Liao, Jianan
    Li, Weibin
    ADVANCES IN STRUCTURAL ENGINEERING, 2020, 23 (01) : 22 - 36
  • [5] The lateral load resistance of unclassified cross-laminated timber walls: Experimental tests and theoretical approach
    Wadi, H.
    Amziane, S.
    Taazount, M.
    ENGINEERING STRUCTURES, 2018, 166 : 402 - 412
  • [6] Behavior of cross-laminated timber panels during and after an ISO-fire: An experimental analysis
    Vairo, Maurizio
    Silva, Valdir Pignatta
    Icimoto, Felipe Hideyoshi
    RESULTS IN ENGINEERING, 2023, 17
  • [7] Experimental analysis of cross-laminated timber rib panels at normal temperature and in fire
    Kleinhenz, Miriam
    Just, Alar
    Frangi, Andrea
    ENGINEERING STRUCTURES, 2021, 246
  • [8] Numerical Investigation of the Fire Resistance of Protected Cross-Laminated Timber Floor Panels
    Menis, Agnese
    Fragiacomo, Massimo
    Clemente, Isaia
    STRUCTURAL ENGINEERING INTERNATIONAL, 2012, 22 (04) : 523 - 532
  • [9] Analysis of cross-laminated timber by computational homogenisation and experimental validation
    Saavedra Flores, E. I.
    Dayyani, I.
    Ajaj, R. M.
    Castro-Triguero, R.
    DiazDelaO, F. A.
    Das, R.
    Gonzalez Soto, P.
    COMPOSITE STRUCTURES, 2015, 121 : 386 - 394
  • [10] Fire Resistance Test and Numerical Simulation of Cross-Laminated Timber Wall
    Zhang J.
    Liu D.
    Zhang Q.
    Bai Y.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2021, 49 (04): : 9 - 19