On approximate reasoning with graded rules

被引:17
作者
Dankova, Martina [1 ]
机构
[1] Univ Ostrava, Inst Res & Applicat Fuzzy Modeling, Ostrava 70103 1, Czech Republic
关键词
approximate reasoning; fuzzy approximation; normal forms; fuzzy control systems;
D O I
10.1016/j.fss.2006.11.019
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This contribution presents a comprehensive view on problems of approximate reasoning with imprecise knowledge in the form of a collection of fuzzy IF-THEN rules formalized by approximating formulas of a special type. Two alternatives that follow from the dual character of approximating formulas are developed in parallel. The link to the theory of fuzzy control systems is also explained. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:652 / 673
页数:22
相关论文
共 26 条
[1]  
[Anonymous], 2002, FUZZY RELATIONAL SYS
[2]   SPECIAL PROPERTIES, CLOSURES AND INTERIORS OF CRISP AND FUZZY RELATIONS [J].
BANDLER, W ;
KOHOUT, LJ .
FUZZY SETS AND SYSTEMS, 1988, 26 (03) :317-331
[3]   From fuzzy logic to fuzzy mathematics: A methodological manifesto [J].
Behounek, L ;
Cintula, P .
FUZZY SETS AND SYSTEMS, 2006, 157 (05) :642-646
[4]  
Bodenhofer U, 2003, SOFT COMPUT, V7, P220, DOI [10.1007/s00500-002-0208-4, 10.1007/S00500-002-0208-4]
[5]   Extensionality based approximate reasoning [J].
Boixader, D ;
Jacas, J .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1998, 19 (3-4) :221-230
[6]   ON TRIANGULAR NORM-BASED PROPOSITIONAL FUZZY LOGICS [J].
BUTNARIU, D ;
KLEMENT, EP ;
ZAFRANY, S .
FUZZY SETS AND SYSTEMS, 1995, 69 (03) :241-255
[7]   The LII and LII1/2 propositional and predicate logics [J].
Cintula, P .
FUZZY SETS AND SYSTEMS, 2001, 124 (03) :289-302
[8]  
CINTULA P, 2005, P EUSFLAT 05 C TU CA, P884
[9]  
Danková M, 2003, SOFT COMPUT, V7, P228, DOI [10.1007/s00500-002-0209-3, 10.1007/S00500-002-0209-3]
[10]  
Dubois D, 1999, INT SER INTELL TECHN, P17