On mathematical problems for the primitive equations of the ocean: the mesoscale midlatitude case

被引:35
作者
Lions, JL
Temam, R [1 ]
Wang, SH
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Indiana Univ, Inst Appl Math & Sci Comp, Bloomington, IN 47405 USA
[3] Coll France, F-75005 Paris, France
[4] Univ Paris Sud, Anal Numer Lab, F-91405 Orsay, France
基金
美国国家科学基金会;
关键词
mesoscale ocean dynamics; geostrophic asymptotics; Boussinesq equations; primitive equations; quasi-geostrophic equations; existence and properties of solutions;
D O I
10.1016/S0362-546X(00)85026-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mesoscale (or synoptic) midlatitude case of oceans or part of the ocean of about a few hundred kms long in the north-south and east-west directions is analyzed. The objective is to represent a small step in this direction as follows: to introduce systematically the geostrophic asymmptotics for the mesoscale ocean and to conduct the mathematical analysis of the resulting quasi-geostrophic (QG) equations and the asymptotics.
引用
收藏
页码:439 / 482
页数:44
相关论文
共 36 条
[11]  
Gill AE., 1982, ATMOSPHERE OCEAN DYN, P317, DOI 10.1016/S0074-6142(08)60034-0
[12]  
Grenier E, 1996, CR ACAD SCI I-MATH, V323, P1013
[13]  
LEGRAS B, 1985, J ATMOS SCI, V42, P433, DOI 10.1175/1520-0469(1985)042<0433:PABAVI>2.0.CO
[14]  
2
[15]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[16]  
Leray J., 1934, J MATH PURE APPL, V13, P331
[17]  
Leray J., 1933, J. Math. Pures Appl, V12, P1
[18]  
Lions J. L., 1993, Computational Mechanics Advances, V1, P55
[19]  
Lions J. L., 1969, QUELQUES METHODES RE
[20]   NEW FORMULATIONS OF THE PRIMITIVE EQUATIONS OF ATMOSPHERE AND APPLICATIONS [J].
LIONS, JL ;
TEMAM, R ;
WANG, SH .
NONLINEARITY, 1992, 5 (02) :237-288