Smooth tail-index estimation

被引:16
作者
Mueller, Samuel [1 ]
Rufibach, Kaspar [2 ]
机构
[1] Univ Sydney, Sch Math & Stat F07, Sydney, NSW 2006, Australia
[2] Univ Zurich, Inst Social & Prevent Med, Biostat Unit, CH-8006 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
'extreme-value' theory; log-concave density estimation; negative Hill estimator; Pickands estimator; tail-index estimation; small-sample performance; EXTREME-VALUE INDEX; MAXIMUM-LIKELIHOOD ESTIMATION; PROBABILITY-DISTRIBUTION; PICKANDS ESTIMATORS; SMALL SAMPLES; END-POINT; DISTRIBUTIONS; INFERENCE; PARETO;
D O I
10.1080/00949650802142667
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The two parametric distribution functions appearing in the extreme-value theory - the generalized extreme-value distribution and the generalized Pareto distribution - have log-concave densities if the extreme-value index gamma epsilon [-1, 0]. Replacing the order statistics in tail-index estimators by their corresponding quantiles from the distribution function that is based on the estimated log-concave density (f) over cap (n) leads to novel smooth quantile and tail-index estimators. These new estimators aim at estimating the tail index especially in small samples. Acting as a smoother of the empirical distribution function, the log-concave distribution function estimator reduces estimation variability to a much greater extent than it introduces bias. As a consequence, Monte Carlo simulations demonstrate that the smoothed version of the estimators are well superior to their non-smoothed counterparts, in terms of mean-squared error.
引用
收藏
页码:1155 / 1167
页数:13
相关论文
共 50 条