Smooth tail-index estimation

被引:16
作者
Mueller, Samuel [1 ]
Rufibach, Kaspar [2 ]
机构
[1] Univ Sydney, Sch Math & Stat F07, Sydney, NSW 2006, Australia
[2] Univ Zurich, Inst Social & Prevent Med, Biostat Unit, CH-8006 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
'extreme-value' theory; log-concave density estimation; negative Hill estimator; Pickands estimator; tail-index estimation; small-sample performance; EXTREME-VALUE INDEX; MAXIMUM-LIKELIHOOD ESTIMATION; PROBABILITY-DISTRIBUTION; PICKANDS ESTIMATORS; SMALL SAMPLES; END-POINT; DISTRIBUTIONS; INFERENCE; PARETO;
D O I
10.1080/00949650802142667
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The two parametric distribution functions appearing in the extreme-value theory - the generalized extreme-value distribution and the generalized Pareto distribution - have log-concave densities if the extreme-value index gamma epsilon [-1, 0]. Replacing the order statistics in tail-index estimators by their corresponding quantiles from the distribution function that is based on the estimated log-concave density (f) over cap (n) leads to novel smooth quantile and tail-index estimators. These new estimators aim at estimating the tail index especially in small samples. Acting as a smoother of the empirical distribution function, the log-concave distribution function estimator reduces estimation variability to a much greater extent than it introduces bias. As a consequence, Monte Carlo simulations demonstrate that the smoothed version of the estimators are well superior to their non-smoothed counterparts, in terms of mean-squared error.
引用
收藏
页码:1155 / 1167
页数:13
相关论文
共 50 条
  • [1] Partially smooth tail-index estimation for small samples
    Mueller, Samuel
    Chhay, Houng
    COMPUTATIONAL STATISTICS, 2011, 26 (03) : 491 - 505
  • [2] Partially smooth tail-index estimation for small samples
    Samuel Müller
    Houng Chhay
    Computational Statistics, 2011, 26 : 491 - 505
  • [3] BAYESIAN ESTIMATION OF A TAIL-INDEX WITH MARGINALIZED THRESHOLD
    Johnston, Douglas E.
    Djuric, Petar M.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5569 - 5573
  • [4] Tail-index estimates in small samples
    Huisman, R
    Koedijk, KG
    Kool, CJM
    Palm, F
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2001, 19 (02) : 208 - 216
  • [5] Estimation of the tail-index in a conditional location-scale family of heavy-tailed distributions
    Ahmad, Aboubacrene Ag
    Deme, El Hadji
    Diop, Moo
    Girard, Stephane
    DEPENDENCE MODELING, 2019, 7 (01): : 394 - 417
  • [6] Bootstrap estimators for the tail-index and for the count statistics of graphex processes
    Naulet, Zacharie
    Roy, Daniel M.
    Sharma, Ekansh
    Veitch, Victor
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 282 - 325
  • [7] A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks
    Simsekli, Umut
    Sagun, Levent
    Gurbuzbalaban, Mert
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [8] On robust tail index estimation
    Beran, Jan
    Schell, Dieter
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (11) : 3430 - 3443
  • [9] Are there common values in first-price auctions? A tail-index nonparametric test
    Hill, Jonathan B.
    Shneyerov, Artyom
    JOURNAL OF ECONOMETRICS, 2013, 174 (02) : 144 - 164
  • [10] On tail index estimation based on multivariate data
    Dematteo, A.
    Clemencon, S.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (01) : 152 - 176