On compact anisotropic Weingarten hypersurfaces in Euclidean space

被引:4
作者
Roth, Julien [1 ]
Upadhyay, Abhitosh [2 ]
机构
[1] UPEM UPEC, CNRS, Lab Anal & Math Appl, F-77454 Marne La Vallee, France
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
Wulff shape; Weingarten hypersurfaces; Anisotropic mean curvature; CURVATURE;
D O I
10.1007/s00013-019-01315-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, up to homotheties and translations, the Wulff shape WF is the only compact embedded hypersurface of the Euclidean space satisfying HrF=aHF+b with a0, b>0, where HF and HrF are, respectively, the anisotropic mean curvature and anisotropic r-th mean curvature associated with the function F:Sn?R+. Further, we show that if the L2-norm of HrF-aHF-b is sufficiently close to 0, then the hypersurface is close to the Wulff shape for the W-2,W-2-norm.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 15 条
[1]  
Alexandrov A.D., 1962, Ann. Mat. Pura Appl., V58, P303, DOI [10.1007/BF02413056, DOI 10.1007/BF02413056, 10.1007/BF02413056.2, DOI 10.1007/BF02413056.2]
[2]  
de Lima EL, 2018, ARCH MATH, V111, P669, DOI 10.1007/s00013-018-1233-6
[3]  
De Rosa A., ARXIV180309118
[4]   Quantitative Stability for Anisotropic Nearly Umbilical Hypersurfaces [J].
De Rosa, Antonio ;
Gioffre, Stefano .
JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) :2318-2346
[5]   Integral formula of Minkowski type and new characterization of the Wulff shape [J].
He, Yi Jun ;
Li, Hai Zhong .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (04) :697-704
[6]   Compact Embedded Hypersurfaces with Constant Higher Order Anisotropic Mean Curvatures [J].
He, Yijun ;
Li, Haizhong ;
Ma, Hui ;
Ge, Jianquan .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (02) :853-868
[7]   NEW EXAMPLES OF CONSTANT MEAN-CURVATURE IMMERSIONS OF (2K-1)-SPHERES INTO EUCLIDEAN 2K-SPACE [J].
HSIANG, WY ;
TENG, ZH ;
YU, WC .
ANNALS OF MATHEMATICS, 1983, 117 (03) :609-625
[8]  
HSIUNG CC, 1954, B AM MATH SOC, V60, P349
[9]   CONSTANT MEAN-CURVATURE SURFACES CONSTRUCTED BY FUSING WENTE TORI [J].
KAPOULEAS, N .
INVENTIONES MATHEMATICAE, 1995, 119 (03) :443-518
[10]  
KOREVAAR NJ, 1988, J DIFFER GEOM, V27, P221