Reservoir computing with swarms

被引:15
作者
Lymburn, Thomas [1 ]
Algar, Shannon D. [1 ]
Small, Michael [1 ,2 ,3 ]
Jungling, Thomas [1 ]
机构
[1] Univ Western Australia, Dept Math & Stat, Complex Syst Grp, Crawley, WA 6009, Australia
[2] Univ Western Australia, ARC Ctr Transforming Maintenance Data Sci, Crawley, WA 6009, Australia
[3] CSIRO, Mineral Resources, Kensington, NSW 6151, Australia
基金
澳大利亚研究理事会;
关键词
CONSISTENCY PROPERTIES; DRIVEN; COMPUTATION; SYSTEM; CHAOS;
D O I
10.1063/5.0039745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study swarms as dynamical systems for reservoir computing (RC). By example of a modified Reynolds boids model, the specific symmetries and dynamical properties of a swarm are explored with respect to a nonlinear time-series prediction task. Specifically, we seek to extract meaningful information about a predator-like driving signal from the swarm's response to that signal. We find that the naive implementation of a swarm for computation is very inefficient, as permutation symmetry of the individual agents reduces the computational capacity. To circumvent this, we distinguish between the computational substrate of the swarm and a separate observation layer, in which the swarm's response is measured for use in the task. We demonstrate the implementation of a radial basis-localized observation layer for this task. The behavior of the swarm is characterized by order parameters and measures of consistency and related to the performance of the swarm as a reservoir. The relationship between RC performance and swarm behavior demonstrates that optimal computational properties are obtained near a phase transition regime.
引用
收藏
页数:12
相关论文
共 34 条
[1]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[2]  
Adamatzky A., 2018, ENCY COMPLEXITY SYST
[3]   Learned emergence in selfish collective motion [J].
Algar, Shannon D. ;
Lymburn, Thomas ;
Stemler, Thomas ;
Small, Michael ;
Jungling, Thomas .
CHAOS, 2019, 29 (12)
[4]  
[Anonymous], 2018, INTRO SWARM ROBOTICS, DOI DOI 10.1007/978-3-319-74528-21
[5]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[6]   Collective Behaviour without Collective Order in Wild Swarms of Midges [J].
Attanasi, Alessandro ;
Cavagna, Andrea ;
Del Castello, Lorenzo ;
Giardina, Irene ;
Melillo, Stefania ;
Parisi, Leonardo ;
Pohl, Oliver ;
Rossaro, Bruno ;
Shen, Edward ;
Silvestri, Edmondo ;
Viale, Massimiliano .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (07)
[7]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[8]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4
[9]   Network structure effects in reservoir computers [J].
Carroll, T. L. ;
Pecora, L. M. .
CHAOS, 2019, 29 (08)
[10]   Evolving Carbon Nanotube Reservoir Computers [J].
Dale, Matthew ;
Miller, Julian F. ;
Stepney, Susan ;
Trefzer, Martin A. .
UNCONVENTIONAL COMPUTATION AND NATURAL COMPUTATION, UCNC 2016, 2016, 9726 :49-61