Artificial intelligence for non-destructive testing of CFRP prepreg materials

被引:38
作者
Schmidt, Carsten [1 ]
Hocke, Tristan [1 ]
Denkena, Berend [1 ]
机构
[1] Leibniz Univ Hannover, Inst Prod Engn & Machine Tools, Ottenbecker Damm 12, D-21684 Stade, Germany
来源
PRODUCTION ENGINEERING-RESEARCH AND DEVELOPMENT | 2019年 / 13卷 / 05期
关键词
Artificial Intelligence; Automated-Fiber-Placement; Defects; Prepreg; Quality assurance;
D O I
10.1007/s11740-019-00913-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a concept of the quality assurance for CFRP prepreg materials and focusses on the classification of thermographic images using convolution neural networks (CNNs). The method for non-destructive testing of CFRP prepreg materials combines a laser-triangulation sensor and an infrared camera to monitor both, the geometry and the impregnation of the prepreg material. The aim is to ensure a high material quality excluding any defective material in an early stage of the process chain of the production of CFRP components. As a result, the reliability of Automated-Fiber-Placement processes utilizing this previously tested material increases. Therefore, an artificial intelligence is set up to classify the thermal images of the CFRP material. Two different architectures of CNN are trained and validated with data sets consisting of thermal images of several prepreg materials and different material defects, such as geometric deviations and varying fiber-matrix-ratios caused by an incorrect impregnation. The CNNs are able to differentiate prepreg materials and to detect and classify certain material-independent defects for known and trained prepreg materials.
引用
收藏
页码:617 / 626
页数:10
相关论文
共 17 条
[1]  
[Anonymous], METHODENVERGLEICH ZF
[2]  
[Anonymous], 3 INT S AUT COMP MAN
[3]  
[Anonymous], APPL SCI
[4]   Comparison of drilled hole quality evaluation in CFRP/CFRP stacks using optical and ultrasonic non-destructive inspection [J].
Caggiano, Alessandra ;
Nele, Luigi .
MACHINING SCIENCE AND TECHNOLOGY, 2018, 22 (05) :865-880
[5]   Non-destructive testing of CFRP using pulsed thermography and multi-dimensional ensemble empirical mode decomposition [J].
Chang, Yu-Sung ;
Yan, Zhengbing ;
Wang, Kai-Hong ;
Yao, Yuan .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2016, 61 :54-63
[6]   Thermographic online monitoring system for Automated Fiber Placement processes [J].
Denkena, Berend ;
Schmidt, Carsten ;
Voeltzer, Klaas ;
Hocke, Tristan .
COMPOSITES PART B-ENGINEERING, 2016, 97 :239-243
[7]   Composite materials parts manufacturing [J].
Fleischer, Juergen ;
Teti, Roberto ;
Lanza, Gisela ;
Mativenga, Paul ;
Moehring, Hans-Christian ;
Caggiano, Alessandra .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2018, 67 (02) :603-626
[8]  
Gäbler S, 2015, AIP CONF PROC, V1650, P336, DOI 10.1063/1.4914628
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Review on quality assurance along the CFRP value chain - Non-destructive testing of fabrics, preforms and CFRP by HF radio wave techniques [J].
Heuer, H. ;
Schulze, M. ;
Pooch, M. ;
Gaebler, S. ;
Nocke, A. ;
Bardl, G. ;
Cherif, Ch ;
Klein, M. ;
Kupke, R. ;
Vetter, R. ;
Lenz, F. ;
Kliem, M. ;
Buelow, C. ;
Goyvaerts, J. ;
Mayer, T. ;
Petrenz, S. .
COMPOSITES PART B-ENGINEERING, 2015, 77 :494-501