Quantum Ostrowski-type integral inequalities for functions of two variables

被引:26
作者
Budak, Huseyin [1 ]
Ali, Muhammad Aamir [1 ]
Tunc, Tuba [1 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
关键词
convex function; Ostrowski inequality; q‐ integral; quantum calculus;
D O I
10.1002/mma.7153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we established some new inequalities of Ostrowski type for the functions of two variables by using the concept of newly defined double quantum integrals. We also revealed that the results presented in this paper are the consolidation and generalization of some existing results on the literature of Ostrowski inequalities.
引用
收藏
页码:5857 / 5872
页数:16
相关论文
共 37 条
  • [1] Ali MA., 2020, SOME NEW TRAPE UNPUB
  • [2] Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense
    Alomari, M.
    Darus, M.
    Dragomir, S. S.
    Cerone, P.
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (09) : 1071 - 1076
  • [3] q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions
    Alp, Necmettin
    Sarikaya, Mehmet Zeki
    Kunt, Mehmet
    Iscan, Imdat
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) : 193 - 203
  • [4] [Anonymous], 2000, HIST Q CALCULUS NEW
  • [5] [Anonymous], 2000, RGMIA MONOGRAPHS
  • [6] Barnett N. S., 2001, SOOCHOW J MATH, V27, P109
  • [7] On q-Hermite-Hadamard inequalities for general convex functions
    Bermudo, S.
    Korus, P.
    Napoles Valdes, J. E.
    [J]. ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 364 - 374
  • [8] Quantum Ostrowski-type integral inequalities for functions of two variables
    Budak, Huseyin
    Ali, Muhammad Aamir
    Tunc, Tuba
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 5857 - 5872
  • [9] Cerone P., 2004, Demonstratio Math, V37, P299, DOI 10.1515/dema-2004-0208
  • [10] Darus M., 2010, RGMIA, V13