Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems

被引:179
作者
Naeemi, Azad [1 ]
Meindl, James D. [1 ]
机构
[1] Georgia Inst Technol, Microelect Res Ctr, Atlanta, GA 30332 USA
关键词
crosstalk; inductance; interconnects; molecular electronics; quantum wires; repeaters; system analysis and design; system optimization;
D O I
10.1109/TED.2006.887210
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Based on physical models, distributed circuit models are presented for single-walled carbon nanotubes (SWCNs) and SWCN bundles that are valid for all voltages and lengths. These models can be used for circuit simulations and compact modeling. It is demonstrated that by customizing SWCN interconnects at the local, semiglobal, and global levels, several major challenges facing gigascale integrated systems can potentially be addressed. For local interconnects, monolayer or multilayer SWCN interconnects can offer up to 50% reduction in capacitance and power dissipation with up to 20% improvement in latency if they are short enough (< 20 mu m). For semiglobal interconnects, either latency or power dissipation can be substantially improved if bundles of SWCNs are used. The improvements increase as the cross-sectional dimensions scale down. For global interconnects, bandwidth density can be improved by 40% if there is at least one metallic SWCN per 3-nm(2) cross-sectional area.
引用
收藏
页码:26 / 37
页数:12
相关论文
共 45 条
[11]   How do carbon nanotubes fit into the semiconductor roadmap? [J].
Graham, AP ;
Duesberg, GS ;
Hoenlein, W ;
Kreupl, F ;
Liebau, M ;
Martin, R ;
Rajasekharan, B ;
Pamler, W ;
Seidel, R ;
Steinhoegl, W ;
Unger, E .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (06) :1141-1151
[12]   Can we achieve ultra-low resistivity in carbon nanotube-based metal composites? [J].
Hjortstam, O ;
Isberg, P ;
Söderholm, S ;
Dai, H .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 78 (08) :1175-1179
[13]   Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition [J].
Huang, LM ;
Cui, XD ;
White, B ;
O'Brien, SP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (42) :16451-16456
[14]   Growth mechanism of oriented long single walled carbon nanotubes using "fast-heating" chemical vapor deposition process [J].
Huang, SM ;
Woodson, M ;
Smalley, R ;
Liu, J .
NANO LETTERS, 2004, 4 (06) :1025-1028
[15]   Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography [J].
Javey, A ;
Qi, PF ;
Wang, Q ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (37) :13408-13410
[16]   High-field quasiballistic transport in short carbon nanotubes [J].
Javey, A ;
Guo, J ;
Paulsson, M ;
Wang, Q ;
Mann, D ;
Lundstrom, M ;
Dai, HJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (10) :106804-1
[17]   CALIBRATING NETWORK ANALYZERS WITH IMPERFECT TEST PORTS [J].
JUROSHEK, JR ;
HOER, CA ;
KAISER, RF .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1989, 38 (04) :898-901
[18]   Electrical properties of 0.4 cm long single-walled carbon nanotubes [J].
Li, SD ;
Yu, Z ;
Rutherglen, C ;
Burke, PJ .
NANO LETTERS, 2004, 4 (10) :2003-2007
[19]   Fabry-Perot interference in a nanotube electron waveguide [J].
Liang, WJ ;
Bockrath, M ;
Bozovic, D ;
Hafner, JH ;
Tinkham, M ;
Park, H .
NATURE, 2001, 411 (6838) :665-669
[20]   Electronic structure of carbon nanotube ropes [J].
Maarouf, AA ;
Kane, CL ;
Mele, EJ .
PHYSICAL REVIEW B, 2000, 61 (16) :11156-11165