Sol-gel design strategy for embedded Na3V2(PO4)3 particles into carbon matrices for high-performance sodium-ion batteries

被引:86
作者
Tao, Shi [1 ]
Cui, Peixin [1 ]
Huang, Weifeng [2 ]
Yu, Zhen [1 ]
Wang, Xingbo [1 ]
Wei, Shenghui [1 ]
Liu, Daobin [1 ]
Song, Li [1 ]
Chu, Wangsheng [1 ]
机构
[1] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230026, Anhui, Peoples R China
[2] Peking Univ, Coll Engn, Key Lab Theory & Technol Adv Batteries Mat, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
SUPERIOR RATE CAPABILITY; CATHODE MATERIAL; COATED NA3V2(PO4)(3); ANODE MATERIAL; HIGH-POWER; GRAPHENE; ENHANCEMENT; CHALLENGES; STABILITY; COMPOSITE;
D O I
10.1016/j.carbon.2015.10.054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NASICON-type Na3V2(PO4)(3)(NVP) is one of the most promising cathode materials for sodium-ion batteries (SIBs). Here, we report a simple sol gel method to prepare NVP@C porous microspheres network for high performance SIBs, which can realize NVP nanoparticles successfully embedding into acetylene carbon (SP) and multiple walled carbon nanotubes (MCNTs) matrices. The electrochemical characterizations demonstrate that both NVP/SP and NVP/MCNTs show excellent cell performance with high rate ability and stable reversibility, especially for the NVP/MCNTs sample. In particular, as high as 112.8 mAh/g and 70 mAh/g of the discharge capacity for NVP/MCNTs system can be delivered at 0.2C and 10C, respectively. Furthermore, a good capacity retention of 90% can be maintained after 400 cycles at 1C rate. Moreover, the enhanced electrode performance is ascribed to the contribution from both of the porous microspheres morphology and functional carbon matrices, which can favor the migration of both electrons and ions. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1028 / 1033
页数:6
相关论文
共 33 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries [J].
Chen, Xiaoqing ;
Zhou, Xianlong ;
Hu, Meng ;
Liang, Jing ;
Wu, Dihua ;
Wei, Jinping ;
Zhou, Zhen .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (41) :20708-20714
[3]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[4]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[5]   Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries [J].
Duan, Wenchao ;
Zhu, Zhiqiang ;
Li, Hao ;
Hu, Zhe ;
Zhang, Kai ;
Cheng, Fangyi ;
Chen, Jun .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (23) :8668-8675
[6]   Electrochemical energy storage in a sustainable modern society [J].
Goodenough, John B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :14-18
[7]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[8]   A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries [J].
Han, Man Huon ;
Gonzalo, Elena ;
Singh, Gurpreet ;
Rojo, Teofilo .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :81-102
[9]   A New Route Toward Improved Sodium Ion Batteries: A Multifunctional Fluffy Na0.67FePO4/CNT Nanocactus [J].
Huang, Weifeng ;
Zhou, Jing ;
Li, Biao ;
An, Li ;
Cui, Peixin ;
Xia, Wei ;
Song, Li ;
Xia, Dingguo ;
Chu, Wangsheng ;
Wu, Ziyu .
SMALL, 2015, 11 (18) :2170-2176
[10]   Self-Assembled Alluaudite Na2Fe3-xMnx(PO4)3 Micro/Nanocompounds for Sodium-Ion Battery Electrodes: A New Insight into Their Electronic and Geometric Structure [J].
Huang, Weifeng ;
Li, Biao ;
Saleem, Muhammad Farooq ;
Wu, Xiang ;
Li, Jianjian ;
Lin, Jun ;
Xia, Dingguo ;
Chu, Wangsheng ;
Wu, Ziyu .
CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (02) :851-860