Texture analysis applied to brain MRI to classify low and high grade gliomas

被引:0
作者
Suarez Garcia, Jose Gerardo [1 ]
Hernandez Lopez, Javier Miguel [1 ]
Moreno Barbosa, Eduardo [1 ]
Martinez Hernandez, Mario Ivan [1 ]
Tejeda Munoz, Guillermo [1 ]
de Celis Alonso, Benito [1 ]
机构
[1] BUAP, Fac Phys & Math, Puebla, Mexico
来源
XV MEXICAN SYMPOSIUM ON MEDICAL PHYSICS | 2019年 / 2090卷
关键词
CLASSIFICATION; FEATURES;
D O I
10.1063/1.5095912
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Gliomas can be classified as either low grade glioma (LGG) or high grade glioma (HGG). Standard diagnosis is based on histopathological tests obtained from a surgical resection or a stereotactic biopsy. Due to their heterogeneity, these tumors can be misclassified. Therefore, there is a need to develop non-invasive and automatic methods that could help specialists with their correct classification. The aim of this work was to develop a computational classification method which distinguished LGGs from HGGs, based on texture analysis of magnetic resonance images (MRI). The model reported was based on a simple methodology and proved to be useful for the classification of gliomas.
引用
收藏
页数:6
相关论文
共 16 条
[11]   Serial stereotactic biopsy of brainstem lesions in adults improves diagnostic accuracy compared with MRI only [J].
Rachinger, W. ;
Grau, S. ;
Holtmannspoetter, M. ;
Herms, J. ;
Tonn, J-C ;
Kreth, F. W. .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2009, 80 (10) :1134-1139
[12]   Diagnostic performance of texture analysis on MRI in grading cerebral gliomas [J].
Skogen, Karoline ;
Schulz, Anselm ;
Dormagen, Johann Baptist ;
Ganeshan, Balaji ;
Helseth, Eirik ;
Server, Andres .
EUROPEAN JOURNAL OF RADIOLOGY, 2016, 85 (04) :824-829
[13]   A nonparametric method for automatic correction of intensity nonuniformity in MRI data [J].
Sled, JG ;
Zijdenbos, AP ;
Evans, AC .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (01) :87-97
[14]   A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities [J].
Vallieres, M. ;
Freeman, C. R. ;
Skamene, S. R. ;
El Naqa, I. .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (14) :5471-5496
[15]   Multiparametric MRI-based differentiation of WHO grade II/III glioma and WHO grade IV glioblastoma [J].
Wiestler, Benedikt ;
Kluge, Anne ;
Lukas, Mathias ;
Gempt, Jens ;
Ringel, Florian ;
Schlegel, Juergen ;
Meyer, Bernhard ;
Zimmer, Claus ;
Foerster, Stefan ;
Pyka, Thomas ;
Preibisch, Christine .
SCIENTIFIC REPORTS, 2016, 6
[16]   Classification of Brain Tumor Type and Grade Using MRI Texture and Shape in a Machine Learning Scheme [J].
Zacharaki, Evangelia I. ;
Wang, Sumei ;
Chawla, Sanjeev ;
Yoo, Dong Soo ;
Wolf, Ronald ;
Melhem, Elias R. ;
Davatzikos, Christos .
MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (06) :1609-1618