Texture analysis applied to brain MRI to classify low and high grade gliomas

被引:0
作者
Suarez Garcia, Jose Gerardo [1 ]
Hernandez Lopez, Javier Miguel [1 ]
Moreno Barbosa, Eduardo [1 ]
Martinez Hernandez, Mario Ivan [1 ]
Tejeda Munoz, Guillermo [1 ]
de Celis Alonso, Benito [1 ]
机构
[1] BUAP, Fac Phys & Math, Puebla, Mexico
来源
XV MEXICAN SYMPOSIUM ON MEDICAL PHYSICS | 2019年 / 2090卷
关键词
CLASSIFICATION; FEATURES;
D O I
10.1063/1.5095912
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Gliomas can be classified as either low grade glioma (LGG) or high grade glioma (HGG). Standard diagnosis is based on histopathological tests obtained from a surgical resection or a stereotactic biopsy. Due to their heterogeneity, these tumors can be misclassified. Therefore, there is a need to develop non-invasive and automatic methods that could help specialists with their correct classification. The aim of this work was to develop a computational classification method which distinguished LGGs from HGGs, based on texture analysis of magnetic resonance images (MRI). The model reported was based on a simple methodology and proved to be useful for the classification of gliomas.
引用
收藏
页数:6
相关论文
共 16 条
[1]   Data-driven Grading of Brain Gliomas: A Multiparametric MR Imaging Study [J].
Caulo, Massimo ;
Panara, Valentina ;
Tortora, Domenico ;
Mattei, Peter A. ;
Briganti, Chiara ;
Pravata, Emanuele ;
Salice, Simone ;
Cotroneo, Antonio R. ;
Tartaro, Armando .
RADIOLOGY, 2014, 272 (02) :494-503
[2]   FreeSurfer [J].
Fischl, Bruce .
NEUROIMAGE, 2012, 62 (02) :774-781
[3]  
Guzman-De-Villoria J. A., 2014, CANC IMAGING, V14, P15
[4]   Changing incidence and improved survival of gliomas [J].
Ho, Vincent K. Y. ;
Reijneveld, Jaap C. ;
Enting, Roelien H. ;
Bienfait, Henri P. ;
Robe, Pierre ;
Baumert, Brigitta G. ;
Visser, Otto .
EUROPEAN JOURNAL OF CANCER, 2014, 50 (13) :2309-2318
[5]   Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation [J].
Jiang, Rifeng ;
Jiang, Jingjing ;
Zhao, Lingyun ;
Zhang, Jiaxuan ;
Zhang, Shun ;
Yao, Yihao ;
Yang, Shiqi ;
Shi, Jingjing ;
Shen, Nanxi ;
Su, Changliang ;
Zhang, Ju ;
Zhu, Wenzhen .
ONCOTARGET, 2015, 6 (39) :42380-42393
[6]   The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary [J].
Louis, David N. ;
Perry, Arie ;
Reifenberger, Guido ;
von Deimling, Andreas ;
Figarella-Branger, Dominique ;
Cavenee, Webster K. ;
Ohgaki, Hiroko ;
Wiestler, Otmar D. ;
Kleihues, Paul ;
Ellison, David W. .
ACTA NEUROPATHOLOGICA, 2016, 131 (06) :803-820
[7]   MRI based medical image analysis: Survey on brain tumor grade classification [J].
Mohan, Geethu ;
Subashini, M. Monica .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 39 :139-161
[8]  
Nyúl LG, 1999, MAGNET RESON MED, V42, P1072, DOI 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO
[9]  
2-M
[10]   Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences [J].
Qin, Jiang-bo ;
Liu, Zhenyu ;
Zhang, Hui ;
Shen, Chen ;
Wang, Xiao-chun ;
Tan, Yan ;
Wang, Shuo ;
Wu, Xiao-feng ;
Tian, Jie .
MEDICAL SCIENCE MONITOR, 2017, 23 :2168-2178