Sampling inequalities for sparse grids

被引:9
|
作者
Rieger, Christian [1 ]
Wendland, Holger [2 ]
机构
[1] Univ Bonn, Inst Numer Simulat, D-53115 Bonn, Germany
[2] Univ Bayreuth, D-95440 Bayreuth, Germany
关键词
INTERPOLATION;
D O I
10.1007/s00211-016-0845-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sampling inequalities play an important role in deriving error estimates for various reconstruction processes. They provide quantitative estimates on a Sobolev norm of a function, defined on a bounded domain, in terms of a discrete norm of the function's sampled values and a smoothness term which vanishes if the sampling points become dense. The density measure, which is typically used to express these estimates, is the mesh norm or Hausdorff distance of the discrete points to the bounded domain. Such a density measure intrinsically suffers from the curse of dimension. The curse of dimension can be circumvented, at least to a certain extend, by considering additional structures. Here, we will focus on bounded mixed regularity. In this situation sparse grid constructions have been proven to overcome the curse of dimension to a certain extend. In this paper, we will concentrate on a special construction for such sparse grids, namely Smolyak's method and provide sampling inequalities for mixed regularity functions on such sparse grids in terms of the number of points in the sparse grid. Finally, we will give some applications of these sampling inequalities.
引用
收藏
页码:439 / 466
页数:28
相关论文
共 50 条
  • [31] Mixed finite elements on sparse grids
    V. Gradinaru
    R. Hiptmair
    Numerische Mathematik, 2003, 93 : 471 - 495
  • [32] Multivariate Quadrature on Adaptive Sparse Grids
    H.-J. Bungartz
    S. Dirnstorfer
    Computing, 2003, 71 : 89 - 114
  • [33] Sparse grids for boundary integral equations
    Griebel, M
    Oswald, P
    Schiekofer, T
    NUMERISCHE MATHEMATIK, 1999, 83 (02) : 279 - 312
  • [34] Selected Recent Applications of Sparse Grids
    Peherstorfer, Benjamin
    Kowitz, Christoph
    Pflueger, Dirk
    Bungartz, Hans-Joachim
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2015, 8 (01): : 47 - 77
  • [35] Numerical integration using sparse grids
    Gerstner, T
    Griebel, M
    NUMERICAL ALGORITHMS, 1998, 18 (3-4) : 209 - 232
  • [36] Mixed finite elements on sparse grids
    Gradinaru, V
    Hiptmair, R
    NUMERISCHE MATHEMATIK, 2003, 93 (03) : 471 - 495
  • [37] Approximating polyhedra with sparse inequalities
    Santanu S. Dey
    Marco Molinaro
    Qianyi Wang
    Mathematical Programming, 2015, 154 : 329 - 352
  • [38] Sparse grids for boundary integral equations
    M. Griebel
    P. Oswald
    T. Schiekofer
    Numerische Mathematik, 1999, 83 : 279 - 312
  • [39] Principal manifold learning by sparse grids
    Christian Feuersänger
    Michael Griebel
    Computing, 2009, 85 : 267 - 299
  • [40] A MULTIGRID METHOD FOR ADAPTIVE SPARSE GRIDS
    Peherstorfer, Benjamin
    Zimmer, Stefan
    Zenger, Christoph
    Bungartz, Hans-Joachim
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : S51 - S70