Stabilising predictive control of non-linear time-delay systems using control Lyapunov-Krasovskii functionals

被引:26
|
作者
Esfanjani, R. Mahboobi [1 ]
Nikravesh, S. K. Y. [1 ]
机构
[1] Amirkabir Univ Technol, Dept Elect Engn, Tehran, Iran
来源
IET CONTROL THEORY AND APPLICATIONS | 2009年 / 3卷 / 10期
关键词
RECEDING-HORIZON CONTROL; STATE;
D O I
10.1049/iet-cta.2008.0465
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by using appropriate control Lyapunov function (CLF) as a terminal cost in stabilising receding horizon control of non-linear delay-free systems, the authors propose a predictive control scheme with guaranteed closed-loop stability for non-linear time-delay systems utilising control Lyapunov-Krasovskii functional (CLKF). In this approach, stability can be attained without imposing any terminal constraints. The absence of additional constraints results in a significant speedup in computation. Illustrative example shows the effectiveness of the method.
引用
收藏
页码:1395 / 1400
页数:6
相关论文
共 50 条
  • [31] On the computation of estimates for time delay systems with Lyapunov-Krasovskii functionals of complete type
    Villafuerte, R.
    Mondie, S.
    Santos, O.
    2006 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING, 2006, : 218 - +
  • [32] Asymmetric Lyapunov-Krasovskii functional method on stability of time-delay systems
    Sheng, Zhaoliang
    Lin, Chong
    Chen, Bing
    Wang, Qing-Guo
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (07) : 2847 - 2854
  • [33] Stabilization of retarded systems of neutral type by control Lyapunov-Krasovskii functionals
    Pepe, P.
    SYSTEMS & CONTROL LETTERS, 2016, 94 : 142 - 151
  • [34] A note on frequency domain interpretation of Lyapunov-Krasovskii method in control of linear delay systems
    Bliman, PA
    Niculescu, SI
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 1461 - 1466
  • [35] Stability of Linear Discrete Time Delay Systems: Lyapunov-Krasovskii Approach
    Stojanovic, S. B.
    Debeljkovic, D. Lj.
    ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 2488 - +
  • [36] Constructing Lyapunov-Krasovskii functionals for linear positive continuous time difference systems
    Aleksandrov, Alexander
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2024, 41 (04) : 634 - 646
  • [37] SUBOPTIMAL CONTROL OF NON-LINEAR TIME-DELAY SYSTEMS
    GOPALAKRISHNANNAIR, G
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 29 (01) : 87 - 99
  • [38] Lyapunov-Krasovskii functionals for scalar neutral type time delay equations
    Velazquez-Velazquez, J. E.
    Kharitonov, V. L.
    SYSTEMS & CONTROL LETTERS, 2009, 58 (01) : 17 - 25
  • [39] On robust stability for uncertain time-delay systems: A polyhedral Lyapunov-Krasovskii approach
    Guan, XP
    Chen, CL
    Shi, P
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2005, 24 (01) : 1 - 18
  • [40] On parameterized Lyapunov-Krasovskii functional techniques for investigating singular time-delay systems
    Liu Li-Li
    Peng Ji-Gen
    Wu Bao-Wei
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 703 - 708