Stabilising predictive control of non-linear time-delay systems using control Lyapunov-Krasovskii functionals

被引:26
|
作者
Esfanjani, R. Mahboobi [1 ]
Nikravesh, S. K. Y. [1 ]
机构
[1] Amirkabir Univ Technol, Dept Elect Engn, Tehran, Iran
来源
IET CONTROL THEORY AND APPLICATIONS | 2009年 / 3卷 / 10期
关键词
RECEDING-HORIZON CONTROL; STATE;
D O I
10.1049/iet-cta.2008.0465
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by using appropriate control Lyapunov function (CLF) as a terminal cost in stabilising receding horizon control of non-linear delay-free systems, the authors propose a predictive control scheme with guaranteed closed-loop stability for non-linear time-delay systems utilising control Lyapunov-Krasovskii functional (CLKF). In this approach, stability can be attained without imposing any terminal constraints. The absence of additional constraints results in a significant speedup in computation. Illustrative example shows the effectiveness of the method.
引用
收藏
页码:1395 / 1400
页数:6
相关论文
共 50 条
  • [21] Lyapunov-Krasovskii functionals and application to input delay compensation for linear time-invariant systems
    Mazenc, Frederic
    Niculescu, Silviu-Iulian
    Krstic, Miroslav
    AUTOMATICA, 2012, 48 (07) : 1317 - 1323
  • [22] Lyapunov-Krasovskii functionals for predictor feedback control of linear systems with multiple input delays
    Li, Zhao-Yan
    Zhou, Bin
    Lam, James
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 303 - 311
  • [23] Model predictive control of constrained non-linear time-delay systems
    Reble, Marcus
    Esfanjani, Reza Mahboobi
    Nikravesh, Seyyed Kamaleddin Y.
    Allgoewer, Frank
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2011, 28 (02) : 183 - 201
  • [24] What ODE-Approximation Schemes of Time-Delay Systems Reveal About Lyapunov-Krasovskii Functionals
    Scholl, Tessina H.
    Hagenmeyer, Veit
    Groell, Lutz
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (07) : 4614 - 4629
  • [25] Lyapunov-Krasovskii prescribed derivative and the Bellman functional for time-delay systems
    Ortega-Martinez, Jorge
    Santos-Sanchez, Omar
    Mondie, Sabine
    IFAC PAPERSONLINE, 2020, 53 (02): : 7160 - 7165
  • [26] The construction of augmented Lyapunov-Krasovskii functionals and the estimation of their derivatives in stability analysis of time-delay systems: a survey
    Zhang, Xian-Ming
    Han, Qing-Long
    Ge, Xiaohua
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (12) : 2480 - 2495
  • [27] Stability Analysis of Time-Delay Switched System Based on Improved Lyapunov-Krasovskii Functionals
    Wang, Qian
    Tian, Fujie
    Chen, Guoda
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 43 (3) : 1473 - 1491
  • [28] Lyapunov-Krasovskii functionals for a class of homogeneous perturbed nonlinear time delay systems
    Portilla, Gerson
    Alexandrova, Irina, V
    Mondie, Sabine
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4743 - 4748
  • [29] Diagonal Lyapunov-Krasovskii functionals for discrete-time positive systems with delay
    Aleksandrov, A. Yu
    Mason, Oliver
    SYSTEMS & CONTROL LETTERS, 2014, 63 : 63 - 67
  • [30] Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems
    Kharitonov, VL
    Zhabko, AP
    AUTOMATICA, 2003, 39 (01) : 15 - 20