High-efficiency anisotropic dual-band metasurface in the infrared region

被引:3
作者
Li, Jing [1 ,2 ]
Liu, Chang [1 ]
Wu, Tiesheng [2 ]
Xu, Wenbin [3 ]
Liu, Yumin [1 ]
Wang, Yu [1 ]
Yu, Zhongyuan [1 ]
Zhu, Danfeng [1 ]
Yu, Li [1 ]
Ye, Han [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing, Peoples R China
[2] Guilin Univ Elect Technol, Coll Informat & Commun Engn, Guilin, Peoples R China
[3] Sci & Technol Opt Radiat Lab, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
anisotropic; metasurface; tellurium; dual-band; ALL-DIELECTRIC METASURFACES; PHASE-GRADIENT; POLARIZATION; PROPAGATION; REFLECTION; RESONANCES; LENS;
D O I
10.1117/1.OE.58.6.067106
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The metasurface is a nanodevice capable of manipulating the phase, polarization, and amplitude of incident light, and it can be applied in many optical devices. However, there is always a problem with metasurface devices: the fixed operating wavelength. An anisotropic gradient metasurface composed of periodic arrangement of differently sized tellurium posts resting on the sapphire substrate is proposed. The metasurface can exhibit efficient beam deflection under x- and y-polarized incidences, but the operating wavebands are different for the two polarizations. When the x-polarized light is normally incident, the diffraction efficiency remains higher than 95% within the wavelength region from 7140 to 7260 nm. The diffraction efficiency remains higher than 95% within the wavelength region from 7840 to 7940 nm under the y-polarized incidence. Furthermore, the proposed metasurface can act as a polarizer in the +1 diffraction order direction within the wavelength region from 6460 to 6760 nm. We hope that the proposed metasurface can play an important role in future free-space optical devices. (C) 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:7
相关论文
共 33 条
[1]   Dielectric metasurfaces solve differential and integro-differential equations [J].
Abdollahramezani, Sajjad ;
Chizari, Ata ;
Dorche, Ali Eshaghian ;
Jamali, Mohammad Vahid ;
Salehi, Jawad A. .
OPTICS LETTERS, 2017, 42 (07) :1197-1200
[2]  
Arbabi A, 2015, NAT NANOTECHNOL, V10, P937, DOI [10.1038/nnano.2015.186, 10.1038/NNANO.2015.186]
[3]   Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules [J].
Arbabi, Ehsan ;
Arbabi, Amir ;
Kamali, Seyedeh Mahsa ;
Horie, Yu ;
Faraon, Andrei .
OPTICA, 2016, 3 (06) :628-633
[4]   High-Efficiency All-Dielectric Metasurfaces for Broadband Polarization Conversion [J].
Chen, Ming ;
Cai, Jianjin ;
Sun, Wei ;
Chang, Linzi ;
Xiao, Xiaofei .
PLASMONICS, 2018, 13 (01) :21-29
[5]   Broadband Achromatic Metasurface-Refractive Optics [J].
Chen, Wei Ting ;
Zhu, Alexander Y. ;
Sisler, Jared ;
Huang, Yao-Wei ;
Yousef, Kerolos M. A. ;
Lee, Eric ;
Qiu, Cheng-Wei ;
Capasso, Federico .
NANO LETTERS, 2018, 18 (12) :7801-7808
[6]   A broadband achromatic metalens for focusing and imaging in the visible [J].
Chen, Wei Ting ;
Zhu, Alexander Y. ;
Sanjeev, Vyshakh ;
Khorasaninejad, Mohammadreza ;
Shi, Zhujun ;
Lee, Eric ;
Capasso, Federico .
NATURE NANOTECHNOLOGY, 2018, 13 (03) :220-+
[7]   Analog optical computing based on a dielectric meta-reflect array [J].
Chizari, Ata ;
Abdollahramezani, Sajjad ;
Jamali, Mohammad Vahid ;
Salehi, Jawad A. .
OPTICS LETTERS, 2016, 41 (15) :3451-3454
[8]   High-Efficiency Dielectric Huygens' Surfaces [J].
Decker, Manuel ;
Staude, Isabelle ;
Falkner, Matthias ;
Dominguez, Jason ;
Neshev, Dragomir N. ;
Brener, Igal ;
Pertsch, Thomas ;
Kivshar, Yuri S. .
ADVANCED OPTICAL MATERIALS, 2015, 3 (06) :813-820
[9]   Broadband High-Efficiency Half-Wave Plate: A Supercell-Based Plasmonic Metasurface Approach [J].
Ding, Fei ;
Wang, Zhuoxian ;
He, Sailing ;
Shalaev, Vladimir M. ;
Kildishev, Alexander V. .
ACS NANO, 2015, 9 (04) :4111-4119
[10]  
Edwards D.F., 1985, Handbook of optical constants of solids