Oganesson Is a Semiconductor: On the Relativistic Band-Gap Narrowing in the Heaviest Noble-Gas Solids

被引:17
作者
Mewes, Jan-Michael [1 ,2 ]
Jerabek, Paul [3 ]
Smits, Odile R. [1 ]
Schwerdtfeger, Peter [1 ]
机构
[1] Massey Univ Auckland, New Zealand Inst Adv Study, Ctr Theoret Chem & Phys, Auckland 0632, New Zealand
[2] Univ Bonn, Mulliken Ctr Theoret Chem, Beringstr 4, D-53115 Bonn, Germany
[3] Max Planck Inst Kohlenforsch KOFO, Dept Mol Theory & Spect, Kaiser Wilhelm Pl 1, D-45470 Mulheim, Germany
关键词
band gap; noble gases; oganesson; radon; superheavy elements; DENSITY-FUNCTIONAL APPROXIMATIONS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; ISOTHERMAL COMPRESSIBILITY; PHYSICAL-PROPERTIES; THERMAL-EXPANSION; ELECTRON; ELEMENTS; ARGON; NEON;
D O I
10.1002/anie.201908327
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oganesson (Og) is the most recent addition to Group 18. Investigations of its atomic electronic structure have unraveled a tremendous impact of relativistic effects, raising the question whether the heaviest noble gas lives up to its position in the periodic table. To address the issue, we explore the electronic structure of bulk Og by means of relativistic Kohn-Sham density functional theory and many-body perturbation theory in the form of the GW method. Calculating the band structure of the noble-gas solids from Ne to Og, we demonstrate excellent agreement for the band gaps of the experimentally known solids from Ne to Xe and provide values of 7.1 eV and 1.5 eV for the unknown solids of Rn and Og. While this is in line with periodic trends for Rn, the band gap of Og completely breaks with these trends. The surprisingly small band gap of Og moreover means that, in stark contrast to all other noble-gas solids, the solid form of Og is a semiconductor.
引用
收藏
页码:14260 / 14264
页数:5
相关论文
共 61 条
  • [21] Solid Oganesson via a Many-Body Interaction Expansion Based on Relativistic Coupled-Cluster Theory and from Plane-Wave Relativistic Density Functional Theory
    Jerabek, Paul
    Smits, Odile R.
    Mewes, Jan-Michael
    Peterson, Kirk A.
    Schwerdtfeger, Peter
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (19) : 4201 - 4211
  • [22] Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
    Jerabek, Paul
    Schuetrumpf, Bastian
    Schwerdtfeger, Peter
    Nazarewicz, Witold
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (05)
  • [23] Klein M.L., 1976, Rare gas solids, V1
  • [24] AB-INITIO MOLECULAR-DYNAMICS SIMULATION OF THE LIQUID-METAL AMORPHOUS-SEMICONDUCTOR TRANSITION IN GERMANIUM
    KRESSE, G
    HAFNER, J
    [J]. PHYSICAL REVIEW B, 1994, 49 (20): : 14251 - 14269
  • [25] Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. PHYSICAL REVIEW B, 1996, 54 (16): : 11169 - 11186
  • [26] ABINITIO MOLECULAR-DYNAMICS FOR LIQUID-METALS
    KRESSE, G
    HAFNER, J
    [J]. PHYSICAL REVIEW B, 1993, 47 (01): : 558 - 561
  • [27] From ultrasoft pseudopotentials to the projector augmented-wave method
    Kresse, G
    Joubert, D
    [J]. PHYSICAL REVIEW B, 1999, 59 (03): : 1758 - 1775
  • [28] Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) : 15 - 50
  • [29] Influence of the exchange screening parameter on the performance of screened hybrid functionals
    Krukau, Aliaksandr V.
    Vydrov, Oleg A.
    Izmaylov, Artur F.
    Scuseria, Gustavo E.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (22)
  • [30] Atomic structure calculations of superheavy noble element oganesson (Z=118)
    Lackenby, B. G. C.
    Dzuba, V. A.
    Flambaum, V. V.
    [J]. PHYSICAL REVIEW A, 2018, 98 (04)