An algorithm for measuring wind speed based on sampling aerosol inhomogeneities

被引:1
作者
Filimonov, P. A. [1 ]
Belov, M. L. [1 ]
Ivanov, S. E. [1 ]
Gorodnichev, V. A. [1 ]
Fedotov, Yu, V [1 ]
机构
[1] Bauman Moscow State Tech Univ, Res Inst Radioelect & Laser Technol, Moscow, Russia
关键词
discrete optical signal processing; digital image processing; lidar; algorithms;
D O I
10.18287/2412-6179-CO-708
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A digital image processing algorithm based on sampling aerosol inhomogeneities was developed in the applied problem of laser remote sensing for measuring the velocity of wind. Tests of the developed algorithm were conducted for synthetic data from numerical simulations and data measured by a lidar. The algorithm developed performs processing of the field of aerosol backscattering coefficient in "Range-Time" coordinates and sufficiently increases the measurement accuracy in comparison with correlation methods.
引用
收藏
页码:791 / +
页数:8
相关论文
共 19 条
[1]  
Abramson N, 2006, Pattern recognition and machine learning, V103, P886, DOI [DOI 10.1117/1.2819119, 10.1117/1.2819119, DOI 10.1117/1]
[2]   Efficiency of machine learning algorithms and convolutional neural network for detection of pathological changes in MR images of the brain [J].
Agafonova, Yu D. ;
Gaidel, A., V ;
Zelter, P. M. ;
Kapishnikov, A., V .
COMPUTER OPTICS, 2020, 44 (02) :266-+
[3]   Analysis of control-oriented wake modeling tools using lidar field results [J].
Annoni, Jennifer ;
Fleming, Paul ;
Scholbrock, Andrew ;
Roadman, Jason ;
Dana, Scott ;
Adcock, Christiane ;
Porte-Agel, Fernando ;
Raach, Steffen ;
Haizmann, Florian ;
Schlipf, David .
WIND ENERGY SCIENCE, 2018, 3 (02) :819-831
[4]  
Bakalov V P, 2002, DIGITAL MODELING RAN
[5]  
[Белов М.Л. Belov M.L.], 2014, [Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия: Приборостроение, Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya: Priborostroenie], P40
[6]   Wavelet-Based Optical Flow for Two-Component Wind Field Estimation from Single Aerosol Lidar Data [J].
Derian, Pierre ;
Mauzey, Christopher F. ;
Mayor, Shane D. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2015, 32 (10) :1759-1778
[7]   Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching [J].
Du, Pan ;
Kibbe, Warren A. ;
Lin, Simon M. .
BIOINFORMATICS, 2006, 22 (17) :2059-2065
[8]   AN ALGORITHM FOR SEGMENTATION OF AEROSOL INHOMOGENEITIES [J].
Filimonov, P. A. ;
Belov, M. L. ;
Fedotov, Yu. V. ;
Ivanov, S. E. ;
Gorodnichev, V. A. .
COMPUTER OPTICS, 2018, 42 (06) :1062-1067
[9]  
Friedman J., 2001, The elements of statistical learning: data mining, inference, and prediction, V1
[10]   The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm [J].
Kim, Man-Hae ;
Omar, Ali H. ;
Tackett, Jason L. ;
Vaughan, Mark A. ;
Winker, David M. ;
Trepte, Charles R. ;
Hu, Yongxiang ;
Liu, Zhaoyan ;
Poole, Lamont R. ;
Pitts, Michael C. ;
Kar, Jayanta ;
Magill, Brian E. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (11) :6107-6135